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Abstract
Transcriptomic contributions to the anatomical, functional, and network layout of the human cerebral cortex (HCC) have 
become a major interest in cognitive and systems neuroscience. Here, we tested if transcriptomic differences support a 
modern, algorithmic cytoarchitectonic parcellation of HCC. Using a data-driven approach, we identified a sparse subset of 
genes that differentially contributed to the cytoarchitectonic parcellation of HCC. A combined metric of cortical thickness 
and myelination (CT/M ratio), as well as cell density, correlated with gene expression. Enrichment analyses showed that 
genes specific to the cytoarchitectonic parcellation of the HCC were related to molecular functions such as transmembrane 
transport and ion channel activity. Together, the relationship between transcriptomics and cytoarchitecture bridges the gap 
among (i) gradients at the macro-scale (including thickness and myelination), (ii) areas at the meso-scale, and (iii) cell density 
at the microscale, as well as supports the recently proposed cortical spectrum theory and structural model.
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Introduction

Transcriptomic contributions to the anatomical, functional, 
and network layout of the human cerebral cortex (HCC) 
have become a major interest in both cognitive and systems 
neuroscience in the last decade (Fornito et al. 2019; Deco 
et al. 2021; Arnatkeviciute et al. 2021c; Wagstyl et al. 2022). 
Recent research shows that active transcription of a small 
set of genes contributes to large-scale gradients and func-
tional hierarchies across the HCC, which likely contribute 
to the regional functional and structural differences in the 
HCC. Specifically, previous findings show that a subset of 
genes increase or decrease their expression from primary to 
association cortices (Burt et al. 2018), likely also contribut-
ing to the hierarchical organization of functional process-
ing streams (Gomez et al. 2019). Nevertheless, it is largely 

unknown if transcriptional differences also contribute to 
modern, algorithmic definitions of cytoarchitectonic areas 
across the whole HCC (Amunts et al. 2020).

This gap in knowledge persists for at least three main 
reasons. First, advancements in sequencing methodologies 
were only developed recently and freely shared with the 
larger neuroscience and human brain mapping fields, which 
enables novel links between gene expression in human 
post-mortem tissue to current in vivo measures of cortical 
anatomy and function (Hawrylycz et al. 2012; Bludau et al. 
2018; Arnatkeviciute et al. 2019; Wang et al. 2022). Sec-
ond, most human research that has linked transcriptomics 
to brain-wide features have focused on either connectivity 
(Arnatkeviciute et al. 2021b; Oldham et al. 2022), functional 
differentiation (Burt et al. 2018), or a small subset of corti-
cal areas (Zachlod et al. 2022). Third, a modern, observer-
independent cytoarchitectonic parcellation of the HCC was 
only recently published in the last three years. For example, 
classic cytoarchitectonic approaches (Brodmann 1909; von 
Economo and Koskinas 1925) rely on the eyes of the anato-
mists to qualitatively determine when two adjacent pieces of 
cortex are cytoarchitectonically distinct. These classic maps 
still used in cognitive and systems neuroscience have addi-
tional flaws aside from their qualitative nature. For example, 
while 60–70% of HCC is buried in indentations, or sulci 
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(Welker 1990; Armstrong et al. 1995), Brodmann did not 
examine sulci, despite the fact that thousands of studies con-
tinue to cite his map (Abbott 2003; Zilles and Amunts 2010; 
Zilles 2018). Contrary to these classic approaches, recent 
methods use observer-independent algorithms to statistically 
determine a cytoarchitectonic boundary between adjacent 
pieces of cortex.

Importantly, the modern cytoarchitectonic parcellation 
of the HCC is functionally meaningful at both the areal and 
network levels. Determining if transcriptomic differences 
contribute to a modern cytoarchitectonic parcellation of the 
HCC can guide the broad fields of cognitive and systems 
neuroscience in understanding the complex relationship 
among gene expression, cytoarchitecture, and functional 
networks of the HCC, in addition to targeting genes that 
could be impacted in deficits altering this multimodal and 
multiscale relationship (Seidlitz et al. 2020; Arnatkeviciute 
et al. 2021a). 

To address this gap in knowledge, we integrated tran-
scriptional data and cytoarchitectonic parcellations of the 
HCC from two freely available datasets (Hawrylycz et al. 
2012; Amunts et al. 2020). Using a data-driven approach, 
we identified a sparse subset of genes that differentially con-
tributed to the cytoarchitectonic parcellation of the HCC. 
These genes were located in two distinct clusters of oppos-
ing expression. Interestingly, these clusters were also corre-
lated with a metric that considered the ratio between cortical 
thickness and myelination. Further analyses of cytoarchi-
tectonic areas revealed both within-network and between-
network relationships. When repeating our analyses with a 
recent multimodal parcellation of the HCC (Glasser et al. 
2016), ~ 90% of genes were shared between both parcella-
tions, while ~ 10% were specific to each parcellation. Enrich-
ment analyses showed that genes specific to the cytoarchi-
tectonic parcellation of the HCC were related to molecular 
functions such as transmembrane transport activity and ion 
channel activity, while genes specific to the multimodal par-
cellation of the HCC were related to calcium channel activ-
ity and cellular processes such as neuron development. Alto-
gether, our results identify a relationship between genetic 
expression and an observer-independent cytoarchitectonic 
parcellation of the HCC, as well as identify novel genes for 
future studies interested in further understanding the contri-
bution of genetic expression to different anatomical, func-
tional, and multimodal parcellations of the HCC.

Materials and methods

Text in sections JüBrain cytoarchitectonic atlas, Allen 
Human Brain Atlas (AHBA) processing, HCP measure 
of T1, T2, and cortical thickness have been adapted from 
previously described methods in (Gomez et  al. 2019). 

Additionally, text in Gene ontology analyses has also been 
adapted from the methods section in (Gomez et al. 2021).

Data

1. JüBrain: https:// www. fz- jueli ch. de/ inm/ inm-1/ EN/ 
Home/ home_ node. html

2. Allen Human Brain Atlas (AHBA): http:// brain- map. 
org/

3. Human Connectome Project (HCP): https:// www. human 
conne ctome. org/ study/ hcp- young- adult

4. Von Economo—Koskinas Atlas: http:// www. dutch conne 
ctome lab. nl/ econo mo/

JüBrain cytoarchitectonic atlas

The JüBrain atlas contains cytoarchitectonic areas that have 
been delineated using an observer-independent statistical 
approach in 10 human post-mortem brains. 142 areas are 
included in the present version of the atlas (v2.9), 111 of 
which are located across the HCC covering roughly 70% of 
the cortex (Fig. 1a) with 5 cortical gap maps (Supplemen-
tal Fig. 1) resulting in full coverage of the HCC (Amunts 
et al. 2020). These 111 cytoarchitectonic regions have been 
aligned to both the MNI305 (Colin 27) and MNI152 tem-
plate space. Given that the AHBA data are also provided in 
the MNI152 nonlinear asymmetric space, the MNI ICBM 
152 (2009c Nonlinear Asymmetric) projection of the cROIs 
was used.

Geodesic distance

To calculate the distance between cROIs, the JüBrain parcel-
lation was converted to a 32,000 vertex mesh surface so that 
the Connectome Workbench software (Marcus et al. 2011) 
could be applied. This required first transforming the par-
cellation from the MNI152 volume space to the fsaverage 
surface and then, the 32k_fs_LR surface. Once the parcel-
lation was transformed to the appropriate surface, the cortex 
function was used to calculate the geodesic distance along 
the surface mesh between parcels represented in millimeters 
(mm). For analyses described below, the pairwise distances 
between regions were normalized between 0 and 1 with 0 
being the absolute shortest distance between any region pair 
and 1 being the greatest possible distance.

Allen Human Brain Atlas (AHBA) processing

The gene expression data are from 6 post-mortem human 
brains and each tissue sample has been mapped to a set of 
3D coordinates in MNI152 space. The methods for collec-
tion, quality control, pre-processing, and normalization of 
the gene expression data have been described previously 

https://www.fz-juelich.de/inm/inm-1/EN/Home/home_node.html
https://www.fz-juelich.de/inm/inm-1/EN/Home/home_node.html
http://brain-map.org/
http://brain-map.org/
https://www.humanconnectome.org/study/hcp-young-adult
https://www.humanconnectome.org/study/hcp-young-adult
http://www.dutchconnectomelab.nl/economo/
http://www.dutchconnectomelab.nl/economo/
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Fig. 1  Gene selection within cytoarchitectonic neighborhoods of the 
human cerebral cortex. a A recent, observer-independent approach 
(Amunts et  al. 2020) parcellated the human cerebral cortex (HCC) 
into 111 cytoarchitectonic areas covering approximately 70% of the 
HCC (Materials and Methods). b Left: Each tissue sample from 6 
post-mortem brains was aligned to this novel cytoarchitectonic par-
cellation (Materials and Methods). Example locations of several 
different probes from different donors are depicted within area 45 
(“Broca’s” area) within the inferior frontal cortex. Each color cor-
responds to a single donor, with each probe containing the relative 

intensity value of the microarray expression for the genes surveyed. 
Right: Matrix illustrating the transcriptomic data across the differ-
ent probes within a single region. Each column corresponds to one of 
the probes shown on the left. Each row is the normalized expression 
value of a single gene. c A histogram of the absolute value of feature 
weights for PC1 are shown (pink) along with the selection of the top 
5% of genes with the highest feature weight values (dark purple). The 
top 200 genes that were most differentially expressed across all 111 
cROIs were selected and used for the remainder of the analyses after 
filtering for ‘brain-specific’ genes (Burt et al. 2018)
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(http:// help. brain- map. org/ displ ay/ human brain/ docum entat 
ion/). Here, we detail additional pre-processing steps imple-
mented in the present study.

The raw microarray expression data for each of the six 
donor brains included the expression level of 29,131 genes 
profiled via 58,692 microarray probes. These data were pre-
processed and simultaneously aligned to the JüBrain par-
cellation using the abagen package (Markello et al. 2021), 
which is a Python toolbox that provides a reproducible 
pipeline processing the transcriptomic data provided by the 
AHBA. While the package provides several different options 
across the different processing steps, the default parame-
ters were used as recommended by (Markello et al. 2021), 
which are briefly described as follows. The first step involves 
removing probes whose intensity value does not exceed that 
of background noise and, if there are multiple probes pre-
sent for a single gene, selecting the probe with the highest 
differential stability across donors. The next step matches 
the tissue samples to cROIs and then normalizes expres-
sion values for each sample across genes and for each gene 
across samples across each donor. The scaled robust sigmoid 
function was used for each normalization step. Lastly, the 
normalized samples were aggregated into the cROIs as the 
“get_expression_data” function outputs the dataframe yield-
ing the normalized expression value for each gene within 
each cROI, resulting in a dataframe of 111 cROIs by 15,630 
genes.

Gene selection

Of the genes that survived quality control implemented via 
the abagen package, we then sought to identify genes that 
were most differentially expressed across the cortex. This 
was done by applying PCA to the cROI expression array, 
which resulted in a score value for each cROI provided by 
the first PC (Fig. 3a). To select for genes of interest, we then 
selected the genes with the highest absolute feature weight 
values for PC1. To further remove genes not of interest, the 
data were filtered to only include ‘brain-specific genes’ as 
identified by Burt et al., (2018). Afterward, the top 200, 
roughly 1% of the original dataset, most significantly corre-
lated genes were identified (Fig. 1c). Hierarchical clustering 
was done on the top and bottom 1% of genes based on their 
expression values across all cROIs to further demonstrate 
the transcriptomic distinctiveness of these selected 200 
genes (Fig. 2a). Additionally, the two expression gradients 
are visualized in Fig. 2b.

Examining spatial autocorrelation

To identify any trends of spatial autocorrelation in our data, 
we correlated gene expression profiles between all region 
pairs using the 15,630 genes that survived pre-processing 

and plotted each pairwise Pearson’s correlation as a function 
of normalized geodesic distance between the two regions 
(Supplemental Fig. 3a). Linear regression was performed 
to generate a model of spatial autocorrelation in the data 
(y = − 0.6723x + 0.3429, mean squared error (MSE) = 0.07). 
Then, to compare spatial autocorrelation in this subset of 
data to the top 200 DE genes, we performed the same cor-
relation, but only using the expression of these 200 genes, 
which is plotted in Supplementary Fig. 3b as a function of 
geodesic distance. The MSE of these data was then calcu-
lated using the same linear model previously described. As 
the MSE was much higher (0.29 vs. 0.07) around the auto-
correlation fit when using the data from the top 200 DE 
genes compared to all genes indicates much greater variance 
in the observed correlations. This suggests that variations 
in gene expression (N = 200) are broadly not due to similar 
changes in distance between regions.

Hierarchical clustering of cytoarchitectonic regions

To further probe the relationship between variations in gene 
expression and cytoarchitectonic organization, we imple-
mented a hierarchical clustering algorithm to determine 
the organization of cROIs based on their differential gene 
expression. Using the final processed gene expression array 
(200 DE genes × 111 cROIs), this matrix served as the input 
to the hierarchical analysis using Euclidean distances and 
the Ward variance minimization algorithm. This analysis 
was executed using the clustering linkage function from the 
Python ‘SciPy’ package. Results of this analysis can be seen 
in Fig. 3b, resulting in two clusters at the highest level.

Multimodal parcellation

To test if the identified genes were specific to the cyto-
architectonic parcellation of the HCC or generalized to 
additional parcellations of the HCC, we repeated our anal-
yses with a multimodal parcellation of the HCC (Glasser 
et al. 2016; Fig. 4). To do so, AHBA data were aligned to 
this multimodal atlas of the HCC using the same process 
described above for alignment to the cytoarchitectonic 
parcellation of the HCC. This was done using the abagen 
package with the same parameters resulting in a normal-
ized expression array of 178 multimodal ROIs by 15,630 
genes. The same analyses (gene selection and exploring 
the relationship of gene expression among ROIs) were then 
performed on the multimodal expression array.

HCP measure of T1, T2, and cortical thickness

Group average cortical maps of T1w/T2w ratio maps (which 
are a proxy for myelination) and cortical thickness were 
obtained from 1096 participants included in the Human 

http://help.brain-map.org/display/humanbrain/documentation/
http://help.brain-map.org/display/humanbrain/documentation/
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Connectome Project (Glasser et al., 2013). In each partici-
pant, T1w and T2w scans were collected using 3 Tesla (3 T) 
MRI and then aligned to the fsLR_32k mesh surface where 
the average values for both T1/T2 and cortical thickness 
were taken at each vertex as in our previous work (Gomez 
et al. 2019).

Given that the average anatomical maps were in the HCP 
fsLR_space, cROI MNI coordinates were transformed into 
the fsLR space, which was done using Freesurfer (Fischl 
et al. 1999; Fischl 2012) by applying a transformation to 
each cROI’s surface label. Distribution of values for both 
measurements within each cROI can be seen in Supplemen-
tal Fig. 5. Four cROIs (Area 33, p24ab, s24, and Area 25) 
displayed a high degree of variability in both HCP measure-
ments and thus, were excluded from future analyses. After 
cROIs were aligned to the average HCP fsLR surface, we 
then extracted the mean myelination and cortical thickness 
value within each cROI along with the standard deviation as 
in our previous work (Gomez et al. 2019).

We then calculated the ratio between myelination and 
cortical thickness values as in our previous work (Will-
brand et al. 2022). Furthermore, we quantified the relation-
ship between PC scores and the CT/M ratio in two ways: 1) 
using a linear regression and 2) the correlation between the 
cROIs PC1 score and mean anatomical value (Fig. 5a). This 
was also done separately for cortical thickness and myelina-
tion (Supplemental Fig. 6). However, given that the CT/M 
ratio has a stronger correlation with the PC score of cROIs 
than each metric individually, the CT/M ratio was used as 
a parsimonious metric related to transcriptomic variation 
across the HCC. Individual AHBA donor correlations to the 
HCP-derived CT/M ratio is included in Supplemental Fig. 7.

Von Economo–Koskinas measure of cell density

Histological measurements of cellular density across the 
cortical mantle and layer-specific measurements of corti-
cal thickness were obtained from the digitized version of 
the Von Economo and Koskinas atlas (von Economo and 
Koskinas 1925; Scholtens et al. 2018). The atlas contains 
48 distinct cortical regions with measurements of mor-
phological information on neuronal count, neuron size, 
and thickness for each cortical layer and across the whole 
mantle. The atlas has recently been translated into a digi-
tal version that is compatible with FreeSurfer and has been 
made publicly available (Scholtens et al. 2018). To obtain 
the Von Economo–Koskinas measurements per cROI, the 
two atlases were combined in the same MNI152 (2009c 
Nonlinear Asymmetric) volume space. Then, for each cROI 

with its corresponding voxels in MNI space, the same voxels 
were indexed in the Von Economo atlas and the values were 
averaged across all the voxels selected. This means that the 
Von Economo measurements were indexed via cROI voxel 
location agnostic to the volumetric location of Von Economo 
regions in which one cROI can have measurements from 
multiple Von Economo regions. This process was repeated 
for each morphological measurement. This resulted in an 
array of 35 different measurements for each cROI: layers 
1–6 and overall for cell density, cell size, overall thickness, 
wall thickness, and dome thickness. Here, we considered 
the relationship between overall cell density across layers 
and layer IV thickness (both measurements normalized) to 
the primary axis of transcriptomic variation (Fig. 5b, c). See 
Supplementary Fig. 8 for all other regression plots with each 
variable and each layer.

Gene ontology analyses

To further elucidate the functional characteristics of the 
different, as well as overlapping, sets of genes identified 
from our analyses examining the relationship between (i) 
transcriptomics and a cytoarchitectonic parcellation of the 
HCC and (ii) transcriptomics and a multimodal parcella-
tion of the HCC, we performed three different enrichment 
analyses using the following open-sourced program: Topp-
Fun within the ToppGene Suite (Chen et al. 2009); https:// 
toppg ene. cchmc. org/ enric hment. jsp. This open-sourced 
program detects if any genes exist within the identified 
set significantly higher than what would be expected by 
random chance (corrected significance values using a Ben-
jamini–Hochberg False Discovery Rate procedure). For 
determining if a particular gene group was significant, 
we chose a p-value method of probability density func-
tion, and restricted our gene ontology identification to the 
following three categories: (i) GO: Molecular Function, 
(ii) GO: Biological Process, and (iii) GO: Cellular Com-
ponent. Importantly, choosing a different p-value method 
(cumulative distribution function), did not significantly 
change the results. The first enrichment analysis focused 
on the genes that overlapped between the cytoarchitectonic 
and multimodal parcellation (Fig. 6a), while the second 
and third enrichment analyses focused on genes that were 
unique to either the cytoarchitectonic parcellation or the 
multimodal parcellation (Fig. 6b).

https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
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Results

A sparse subset of brain‑specific genes contributes 
to a modern cytoarchitectonic parcellation 
of the human cerebral cortex (HCC)

To identify genes that potentially contribute to an algorith-
mic, observer-independent cytoarchitectonic parcellation 

of the HCC (Fig. 1a), we assessed gene expression profiles 
that were significantly different among cytoarchitectonic 
areas (cROIs) using two freely available datasets: (1) a 
modern cytoarchitectonic parcellation of the HCC from 10 
post-mortem brains (JüBrain: https:// www. fz- jueli ch. de/ 
inm/ inm-1/ EN/ Home/ home_ node. html) and (2) the Allen 
Human Brain Atlas, which consists of transcriptomic data 
from tissue samples in 6 post-mortem brains (AHBA: 

Fig. 2  Binary clustering of the top 200 genes reveals that opposing 
expression gradients contribute to the cytoarchitectonic layout of 
cortical areas identified using an observer-independent technique. a 
Dendrograms showing the algorithmic clustering of the top and bot-
tom 200 genes. (top) The top 200 genes that are most differentially 
expressed cluster predominantly into two groups at the highest level 
(brown and tan). The names of each gene are plotted radially. (bot-
tom) On the contrary, hierarchical clustering reveals minimal dis-
tance between branches for the bottom 200 genes, indicating very lit-
tle transcriptomic differences between clusters in the dendrogram. b 
(top) Hypothesis matrix of genetic gradients (based on Gomez et al. 
2019). The hypothesis matrix was created using a stepwise change in 
gene expression for each cROI as ordered by their PC score in which 
one set increases, and the other set decreases, in expression across 

regions. (bottom) Observed matrix of the gene expression of the 
top 200 differentially expressed genes (y-axis) across the 111 cROIs 
ordered by their score from PC1 (x-axis). The brown cluster of genes 
from a represents the increasing cluster on the left, while the tan clus-
ter from a represents the descending cluster on the right. c We calcu-
lated the correlation between the hypothesis matrix and the observed 
matrix by randomly selecting from 50% of the cROIs to correlate 
with corresponding rows in the hypothesis matrix and bootstrapped 
with an N = 1,000. This resulted in a distribution of values ranging 
from 0.74 to 0.90 with an observed R-value of 0.84 (p < 0.0001). We 
also generated a null distribution (N = 1000; cyan) of R values by 
shuffling the cROI order in the observed matrix prior to correlating it 
to the hypothesis matrix

https://www.fz-juelich.de/inm/inm-1/EN/Home/home_node.html
https://www.fz-juelich.de/inm/inm-1/EN/Home/home_node.html


925Brain Structure and Function (2024) 229:919–936 

http:// brain- map. org/). To test if there is a relationship 
between genetic expression and the observer-independent 
cytoarchitectonic parcellation of the HCC, transcriptomic 
data were pre-processed and aligned to the cytoarchitec-
tonic parcellation (Fig. 1b) via the abagen package. This 
process precisely aligned the expression of 15,630 genes 
(controlling for false positives, duplicate probes, etc.; 
Materials and Methods) across 111 cROIs.

A principal component analysis (PCA) was implemented 
to identify genes that were most differentially expressed 
across all 111 cROIs. A histogram (Fig. 1c) of resultant 
feature weights for each gene empirically supported that 
a majority of the genes do not contribute to the primary 
axis of transcriptomic variation. To identify genes that most 
strongly contributed to the cytoarchitectonic arealization of 
HCC, we restricted our analyses to the top 1% (n = 200) 
genes that were most differentially expressed as in our 
previous work (Gomez et al. 2019, 2021) and were ‘brain-
specific’ (as identified by Burt et al. 2018) (Fig. 1c, light 
purple). Importantly, variation in expression of the identified 
genes across the geodesic surface were not driven by trends 
in spatial autocorrelation (Supplementary Fig.3b).

Observer‑independent cytoarchitectonic areas are 
embedded within two opposing transcriptomic 
gradients

As previous research showed that cROIs in the visual pro-
cessing hierarchy are located within opposing transcriptomic 
gradients (Gomez et al. 2019), we tested the targeted hypoth-
esis that this relationship extended more broadly to cROIs 
distributed throughout HCC. To test this hypothesis, the top 
200 genes were submitted to an agglomerative hierarchi-
cal clustering algorithm (Materials and Methods), similar 
to the previously mentioned study. This approach revealed 
that genes clustered into two groups at the highest level with 
branch distances much greater than that of other clustering 
levels (Fig. 2a). These two clusters generated two opposing 
gradients among cROIs: one that increased in expression 
and another that decreased in expression along the order 
determined by score values from PC1 (Fig. 2b). Interest-
ingly, however, only 20% of genes overlapped between the 
present group of genes and those identified previously that 
contributed to the positioning of areas in the visual pro-
cessing hierarchy (Gomez et al. 2019). This large difference 
between gene sets, one connected to the organization of the 
visual hierarchy and the other connected to the whole HCC 
organization, may be due to regional differences in cellular 
diversity, cellular density, and even developmental origin.

We also tested the correlation between the hypothesis 
matrix and the observed matrix and found an R-value of 0.87 
with a range of 0.74–0.92 (Fig. 2c) when randomly selecting 
for 50% of the cROIs (permuted N = 1000). Furthermore, 

we generated a null distribution of correlations between 
the hypothesis matrix and shuffled cROIs, which was well 
below the range observed for 50% of the ordered cROIs, 
indicating the robustness of the identified relationship. For 
comparison, we also applied the same clustering method, 
but to the bottom 200 genes, which revealed a much more 
homogenous and smaller branching distance across levels 
(Fig. 2a), further supporting that this relationship was spe-
cific to the genes most differentially expressed among cROIs 
distributed throughout the HCC.

Primary axis of transcriptomic variation reveals 
within‑ and between‑network clustering 
of cytoarchitectonic areas

PCA on the cROIs with each gene set as a feature identified 
that the first PC explained 24.12% of the variance. As such, 
we refer to PC1 as a representation of the primary axis of 
transcriptomic variation in the cytoarchitectonic arealization 
of HCC. There is a clear structure among the distribution 
of cROIs along this primary axis: early visual areas were 
positioned on one end of the transcriptomic axis (Fig. 3a, 
hOc1 (e.g., striate cortex, or V1), hOc2 (V2), etc., lower 
right column), while frontal and insular regions were posi-
tioned on the other end of the axis (Fig. 3a, Ia2, Op7, etc.; 
upper right column).

To further explore the relationship of this primary axis 
of transcriptomic variation to the arealization of the HCC, 
we generated transcriptomic profiles—or fingerprints 
(Fig. 3c)—for each cROI consisting of the normalized aver-
age expression of the top 200 differentially expressed (DE) 
genes. Using these transcriptomic fingerprints, we then per-
formed an agglomerative hierarchical clustering algorithm 
to examine the different clusters of cROIs based on the simi-
larity of transcriptomic fingerprints. These similarities were 
further represented in a two-dimensional plane using multi-
dimensional scaling (MDS) in which the Euclidean distance 
between regions represented the transcriptomic similarity or 
dissimilarity to other regions.

This analysis revealed two primary clusters of cROIs 
based on transcriptomic fingerprints. One cluster repre-
sented in orange in Fig. 3b primarily consists of regions 
from frontal, cingulate, and insular regions, while the other 
cluster represented in green contains regions from occipi-
tal, parietal, and temporal regions. Furthermore, within 
each cluster, there are smaller subdivisions (various shades 
of green and orange in Fig. 3b). When further exploring 
the clustering within the MDS, we found that there were 
two types of genetic similarities. One shows ‘within tran-
scriptomic network’ clustering, such as visual regions that 
cluster together in the dark green cluster in the lower left of 
Fig. 3b. The other shows ‘across transcriptomic network’ 
clustering such as fusiform regions (FG1, FG2, FG3, and 

http://brain-map.org/
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FG4). For example, even though both areas FG2 and FG4 
(i) are located in the lateral FG, (ii) contain regions that are 
selective for faces and words, and (iii) are cortically adjacent 
to each other (Weiner et al. 2017), they are located within 
different transcriptomic networks. These qualitative differ-
ences can be observed in the transcriptomic fingerprints 
highlighted in Fig. 3c.

To test if spatial proximity contributed to transcriptomic 
similarity, we calculated the ratio between the pairwise 
Euclidean distance between two cROIs in the MDS plane 
and the corresponding geodesic distance on the surface 
(Fig. 3d). Both distance metrics were normalized. Values in 
red (greater than 1) correspond to a greater transcriptomic 
difference over geodesic distance while values less than 
1 (in blue) correspond to a greater geodesic distance than 
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transcriptomic difference. Pairwise ratio values are shown 
for the 8 representative cROIs that were also illustrated in 
Fig. 3c. Ultimately, while there are a few cROIs that are 
as transcriptomically similar as they are proximal, for a 
majority of regions, geodesic distance does not determine 
transcriptomic similarity. For example, regions hOc1 and 
Area 1 are cortically far apart, but transcriptomically similar; 
however, regions FG1 and FG2 are cortically proximal to 
FG3 and FG4, but are transcriptomically distinct from each 
another. These observed relationships are consistent with 
the recent structural model (García-Cabezas et al. 2019), 
which proposes that macroanatomical organization is driven 

by factors such as connectivity, timing of development, 
and neural proliferation. Support for the structural model, 
in comparison to the distance rule model (Barbas 1986), 
which postulates that anatomical similarity is due to distance 
between regions, has been established in both macaques and 
humans (Hilgetag et al. 2016; Beul et al. 2017; Zikopoulos 
et al. 2018; Aparicio-Rodríguez and García-Cabezas 2023).

For cROI ‘across-network clustering’ pairs, we quantified 
the relationship between transcriptomic similarity and corti-
cal distance by calculating a transformed ratio value (abso-
lute value of the Pearson’s correlation coefficient in gene 
expression between two regions divided by the normalized 
geodesic distance along the surface) and then subtracted this 
value from 1 (Supplementary Fig. 2a). 0 represents region 
pairs that are both highly correlated and cortically distant. 
The region pair to exhibit the strongest ‘across-network 
clustering’ are regions 4p of the somatosensory cortex and 
Ph3 of the parahippocampal cortex (R = 0.81 and normal-
ized geodesic distance = 0.77) that cluster together with 
early visual regions and other somatosensory regions. Other 
surprising region pairs include STS2 in superior temporal 
cortex with p32 in medial anterior cingulate cortex, hOc3v 
in extrastriate visual cortex with 4a in primary motor cortex, 
and hOc1 in striate cortex with 3b in primary somatosen-
sory cortex. The combination of these findings indicate that 
transcriptomic similarity between region pairs is not driven 
by cortical proximity.

Lastly, we repeated our analyses with a variable number 
of genes (N = 100, 500, 1000 and 1500) to test if the number 
of genes affected the clustering of regions. Compared to our 
analyses with 200 genes, we found that the clusters remain 
stable across the different Ns observed with decreasing Rand 
Index values as the number of genes increased (Fig. 3e). 
This finding further enhances the reliability of the cluster-
ing results.

Genes differentially expressed across a multimodal 
parcellation result in a similar clustering of regions

While the cytoarchitectonic parcellation covers most of the 
HCC (~ 70%), we also considered a multimodal parcella-
tion with full coverage of the HCC (Glasser et al. 2016). 
With this parcellation, we repeated our previous analyses 
(see Materials and Methods) using hierarchical clustering 
of multimodal ROIs based on their expression of the top 
200 differentially expressed genes (Fig. 4). At the highest 
level, there are two broad clusters that have the same dif-
ferentiation to the cytoarchitectonic parcellation, as well as 
additional sub-clustering with ‘across-network’ and ‘within-
network’ features (Fig. 4a). Within the 2D Euclidean space, 
V1 and other early visual regions are at one end while insu-
lar regions are at the other end. Interestingly, many regions 
that are located in the ‘gap maps’ of the cytoarchitectonic 

Fig. 3  Hierarchical clustering of transcriptomic fingerprints reveals 
within- and between-network clustering of cytoarchitectonic areas. 
a Scores obtained from the first PC, highlighting the linear order of 
cROIs that is used for visualizations in figures throughout the manu-
script. Score values from the first PC (y-axis) are plotted as a function 
of each cROI (x-axis), ordered by score values (from lowest (left) to 
highest (right)). Names of the cROIs ordered by the first PC are illus-
trated on the bottom axis starting with hOc1 on the left in dark pur-
ple and ending with insular region Ia2 in light blue on the far right. 
Also shown are topographic plots that illustrate the score value for the 
cROIs on the MNI152 inflated cortical surface. cROIs in dark pur-
ple have a lower PC score while cROIs in light purple have a higher 
PC score. b Agglomerative hierarchical clustering was applied to the 
cROIs and their expression of the 200 most differentially expressed 
genes, which revealed two main clusters (orange and green) at the 
highest level (top) with subclusters shown in different shades of green 
and orange. Topographical representations of the cROIs with their 
corresponding cluster label are also shown in different views. To fur-
ther illustrate the genetic differences and similarities between cROIs, 
multi-dimensional scaling was applied to cROIs and their differential 
gene expression and then color-coded using labels from the hierarchi-
cal clustering. Regions close together in the 2D plane are more tran-
scriptomically similar and regions further apart are more transcrip-
tomically dissimilar. Within the MDS, there are two main types of 
genetic similarities: within-network and between-network. For exam-
ple, all the early visual regions cluster together in the dark green clus-
ter on the left highlighting within-network similarities. Additionally, 
while regions FG1, FG2, FG3, and FG4 are cortically adjacent to one 
another, FG1 and FG2 are in one transcriptomic cluster (green), while 
FG3 and FG4 are in a transcriptomically distinct cluster (orange). The 
former areas cluster more closely to parietal areas, while the latter 
cluster more closely with areas in superior temporal cortex, both of 
which are indicative of between-network clustering. c Transcriptomic 
fingerprints of selected cROIs in which the radial axis shows the rela-
tive gene expression for the top 200 differential genes. The column on 
the left highlights regions within the same cluster, while the column 
on the right highlights regions across two different clusters to quali-
tatively illustrate the similarities and differences in gene expression 
profiles. d Ratio comparison between geodesic distance of cROIs and 
their transcriptomic similarity as measured by the Euclidean distance 
between the cROIs on the MDS 2D plane. Values in red (or above 
one) have a greater transcriptomic difference than geodesic distance 
(i.e., across-network clustering) while values in blue (or less than 
one) have a greater geodesic distance than transcriptomic difference 
(i.e., within-network clustering). e Rand index matrix representing 
the pairwise stability of cluster labels when selecting for a different 
number of the highest feature weight values (N = 100, 200, 500, 1000, 
and 1500 genes), while still limiting analyses to brain-specific genes 
(N = 1898)

◂
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Fig. 4  90% overlap of the top genes contributing to either cytoarchi-
tectonic or multimodal parcellations of the HCC. a Differential gene 
expression, clustering, and MDS analyses were also performed for 
AHBA data aligned to a recent multimodal parcellation of the HCC. 
Similarly to the cytoarchitectonic parcellation, there are two clusters 
at the highest level separating primary sensory regions from fron-
tal and insular regions with similar subclusters shown in the lighter 
shades of green and orange. Also, similar results occur for the MDS 
analysis: V1 is at one end of the MDS axis, while insular regions are 

positioned at the other end. b Venn diagrams represented as horizon-
tal bars for the overlapping genes between the two different parcella-
tions. Different rows correspond to the different sized N of top differ-
ential genes (N = 100, 200, 500, 1000) that were ‘brain-specific’ (see 
Burt et al. 2018). For the top 200 differentially expressed genes, 180 
of the 200 genes overlap and the other 20 genes are unique to each 
parcellation. Through each iteration of N genes, at least 8% of genes 
are unique to either parcellation with the most being 14%
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parcellation tend to cluster with other frontal and insular 
regions with the exception of a few cingulate regions and 
temporal regions that cluster with more occipital and parietal 
regions.

Additionally, we tested how similar the differentially 
expressed gene sets were between the two parcellations 
(Fig. 4b). For the top 200 genes selected from each parcel-
lation, 90% of the genes were the same, which is consist-
ent with the similar clustering results across parcellations 
described above. This was replicated for each N iteration of 
genes (N = 100, 200, 500, and 1000), which maintain similar 
distributions of overlap between gene sets.

CT/M ratio: a combined metric that is highly 
correlated with the primary axis of transcriptomic 
variation

What underlying anatomical features are related to this 
primary axis of transcriptomic variation? While previous 
research has explored the relationship between transcriptom-
ics and continuous gradients of cortical thickness and myeli-
nation individually (Burt et al. 2018), our results show that 
(1) these transcriptomic clusters are more strongly correlated 
with a combined metric of cortical thickness and myelina-
tion, as well as other anatomical features and (2) the striate 
cortex and primary motor cortex are very transcriptomi-
cally similar to one another. This is somewhat surprising 

Fig. 5  The CT/M ratio, cell 
density, and layer IV thickness 
correlate with the primary axis 
of transcriptomic variation. a 
The CT/M ratio as a function of 
PC score. There is a strong posi-
tive correlation between the two 
metrics (Pearson’s R = 0.872, 
p < 0.01e−34). b Normalized cell 
density (y-axis) is negatively 
correlated with PC score for 
each cROI (x-axis; Pearson’s 
R = − 0.579, p < 2.90e−11)). c 
Normalized layer IV thickness 
(y-axis) is negatively correlated 
with PC score for each cROI 
(x-axis; Pearson’s R = − 0.428, 
p < 6.21e−6)
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Fig. 6  Cytoarchitectonic genes 
are more enriched in cell body 
functions and amine transport, 
while multimodal genes are 
more enriched in ion channel 
and transport functions. a List 
of 5 key annotation categories 
(along with example genes 
associated with each category 
from the Gene Ontology (GO) 
Database) for the 180 genes 
overlapping between the 
cytoarchitectonic parcellation 
and the multimodal parcellation 
(Fig. 4). Top categories include 
ion channel function, synaptic 
function, cellular projections, 
cell maintenance, and brain 
development. b Gene enrich-
ment results for the differing 
sets of genes for the cytoarchi-
tectonic (left column) and 
multimodal (right column) par-
cellation of the HCC. Each GO 
term is plotted by the log-trans-
formed FDR-corrected p-value 
in the horizontal bars for their 
respective significance in either 
set of genes (i.e., cytoarchitec-
tonic or multimodal). Given that 
180 of the genes are the same 
between both sets, enrichment 
results are similar for each set in 
which both are heavily enriched 
in synaptic functions. Yet, dif-
ferences between the two sets 
show that the ‘anatomical’ gene 
set is more enriched in cell body 
functions and amine transport, 
while the ‘multimodal’ genes 
are more enriched in ion chan-
nel and transport functions
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since striate cortex is cortically thin, heavily myelinated, 
cell dense, and has a prominent and subdivided layer IV 
(Collins et al. 2010; Balaram and Kaas 2014; Gomez et al. 
2021), while primary motor cortex is cortically thick, heav-
ily myelinated, relatively cell sparse (compared to striate 
cortex) and the presence and prominence of layer IV is 
contentious (García-Cabezas and Barbas 2014; Barbas and 
García-Cabezas 2015).

Given recent work showing that the ratio between cortical 
thickness and myelination (CT/M ratio) was a particularly 
useful metric for parcellating one HCC area from another 
(Willbrand et al. 2022), we hypothesized that despite these 
differences in anatomical and architectonic features across 
cortical areas, transcriptomic similarities may be capturing 
a ratio of anatomical features. To test this hypothesis, we 
aligned our cROIs to average cortical thickness and mye-
lination maps from the 1096 participants included in the 
Human Connectome Project (HCP). This analysis revealed 
a strong positive correlation between the expression of these 
200 genes and the CT/M ratio across cROIs of the HCC as 
shown in Fig. 5a (R = 0.872; p < 0.01e−34). We also repeated 
the PCA analysis and CT/M measurements in individual 
donor brains and found that for most donors, the correlation 
remained high between the PC1 score of regions and CT/M. 
Variations across donors is likely due to the variability in 
probe coverage and differences in alignment between the 
template cytoarchitectonic atlas and donor-specific volume 
space.

In addition to this CT/M ratio, underlying cytoarchitec-
tonic features likely contributing to this primary transcrip-
tomic axis are cell density and the presence/prominence of 
layer IV. For example, striate cortex (lower left of Fig. 5a) 
has a uniquely prominent layer IV with several sublayers, 
as well as is the most cell dense area in the HCC (Collins 
et al. 2010; Balaram and Kaas 2014; Gomez et al. 2021). 
Additionally, visual areas have a higher cell density than 
HCC areas outside of visual cortex (Collins et al. 2010). 
Further, area Ia2 does not have a layer IV (agranular) while 
areas Id5 and OP7 have a thin layer IV (von Economo 
2009; Zilles and Amunts 2012; Amunts and Zilles 2015) 
(dysgranular; upper right of Fig. 4a). Thus, to further test 
if there was also a relationship between cell density, granu-
larity, and the primary axis of transcriptomic variation of 
the cROIs, we incorporated cell density and layer IV thick-
ness estimates from the classic Von Economo–Koskinas 
atlas into our computational, multimodal pipeline (Mate-
rials and Methods). This analysis showed a negative cor-
relation (R = − 0.579, p < 2.90e−11) between cell density 
and the primary axis of transcriptomic variation (Fig. 5b). 
Layer IV thickness was also negatively correlated with 
the primary axis of transcriptomic variation (R = − 0.428, 
p < 6.21e−6; Fig. 5c). Altogether, the primary axis of tran-
scriptomic variation among cROIs likely reflects aspects 

of cell density, the presence/prominence of layer IV, and 
the CT/M ratio.

Gene enrichment analyses reveal that different 
sets of genes contribute to cytoarchitectonic 
and multimodal HCC parcellations

To gain a deeper understanding of the functional roles of 
the top 200 differentially expressed genes contributing to 
the observer-independent cytoarchitectonic parcellation of 
the HCC, gene symbols were submitted to an enrichment 
analysis resulting in five clusters of unique structural or 
functional properties (Materials and Methods). The most 
significant terms were associated with channel and syn-
aptic function, cellular projections and maintenance, and 
transport of molecules or ions (Fig. 6a).

To test if these genes were specific to the cytoarchi-
tectonic parcellation of the HCC or generalized to addi-
tional parcellations of the HCC, we repeated our analyses 
with a multimodal parcellation of the HCC (Glasser et al. 
2016; Fig. 4a). Our quantifications revealed that roughly 
90% of the top 200 genes are shared between parcellation 
modality, while roughly 10% are different. Specifically, we 
repeated the enrichment analyses with different sized sets 
of differential genes (N = 100, N = 200, N = 500, N = 1000; 
Fig. 4b). Through each iteration, at least 8% of genes are 
unique to either parcellation with the most being 14%.

Interestingly, enrichment analyses showed that parcel-
lation-specific genes had different functions: cytoarchitec-
tonic arealization genes were enriched in molecular func-
tions such as transmembrane transport activity and ion 
channel activity while the multimodal arealization.

genes were enriched in functions such as calcium chan-
nel activity and cellular processes such as neuron devel-
opment (Fig. 6b). Furthermore, we submitted the top 200 
differentially expressed genes of the cytoarchitectonic 
parcellation to a protein–protein network analysis via the 
STRING database (Supplemental Fig.9). We found that 
the most connected network of genes performed ion chan-
nel functions and belonged to the KCNA and SCN fam-
ily, while the second most connected network consisted 
of neurotransmitter-related genes followed by cell main-
tenance genes.

Discussion

In the present study, we implemented a data-driven 
approach and identified transcriptomic contributions to a 
modern algorithmic cytoarchitectonic parcellation of the 
HCC. These findings provide a clear bridge to recent par-
allel empirical tracks examining the contributory role of 
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transcriptomics to identified gradients and maps of the 
HCC. The first track explores the relationship between 
transcriptomics and gradients in the HCC (Burt et  al. 
2018; Gomez et al. 2019; Vogel et al. 2022). The second 
track explores the relationship between transcriptomic-
based parcellations (TBP) of the HCC relative to modern 
and classic areal parcellations of the HCC (Gryglewski 
et al. 2018, 2022; Shine et al. 2022). The bridge is that 
neither track considered a modern, observer-independent 
cytoarchitectonic parcellation of the HCC – instead, they 
considered observer-dependent parcellations that have sev-
eral shortcomings as discussed previously (Amunts and 
Zilles 2015; Amunts et al. 2020). The results provided 
by the present study integrate these two empirical tracks 
in a critical manner and provide theoretical insights for 
future studies. Below, we discuss these findings in the con-
text of: (i) the role of transcriptomics, cortical thickness, 
and myelination for integrating continuous gradients and 
discrete, classic “crazy-pavement maps” along a modern 
“cortical spectrum,” (ii) transcriptomics as a bridge con-
necting areas of functionally distinct cortical networks, 
and (iii) transcriptomics contributing to different scales 
of organization and different parcellations of the HCC.

The role of transcriptomics, cortical thickness, 
and myelination for integrating continuous 
gradients and discrete, classic “crazy‑pavement 
maps” along a modern “cortical spectrum”

In the broader neurology, cognitive neuroscience, and 
human brain mapping communities, the last decades 
continue a longstanding trend of identifying gradients 
and parcellations of the HCC. For example, in a review 
of Bailey and Bonin’s Isocortex of Man, Le Gros Clark 
(1952) wrote: “Finally, neurologists should continue to 
regard with the greatest suspicion the incredibly com-
plicated “crazy-pavement” maps of cortical areas which 
have from time to time been elaborated by the Vogt school 
since Campbell’s and Brodmann’s original studies were 
first published” (Le Gros Clark 1952). Both Brodmann and 
Sanides (among others) were students of the “Vogt school” 
and along with the Vogts, produced a parcellation of the 
HCC into ~ 180–200 areas over several decades (Nieuwen-
huys 2013; Foit et al. 2022)—a number that is compara-
ble to maps produced with modern multimodal and data-
driven methods (Huth et al. 2016; Glasser et al. 2016). 
Despite this “crazy-pavement” map, the Vogts (Vogt and 
Vogt 1919) also acknowledged that the boundaries among 
adjacent cortical areas were not sharp and building on 
their hypothesis, Sanides (Sanides 1964) proposed that in 
addition to cortical areas, there were directions of “gra-
dation” streams that correlated with directions of brain 

evolution and neocortical development (summarized by 
(Henssen et al. 2016).

A recent study (John et al. 2022) proposed the concept 
of a cortical spectrum that builds on the foundation of this 
classic work by integrating three features of functional and 
structural organization: (i) a mosaic of functionally and 
structurally distinct parcellations of the cortical mantle, (ii) 
a seemingly heterogenous six-layered structure in which 
connectivity is the driving factor of functional differences 
(Barbas 1986; Barbas and Rempel-Clower 1997), and (iii) 
gradients of architectonic structure that predict cortico-cor-
tical connections. Here, we propose that our results nicely 
complement and extend these classic and modern theoreti-
cal and empirical findings linking different scales of brain 
structure and function by incorporating the correlated rela-
tionship between gene expression and the CT/M ratio, in 
which there is a stronger relationship with gene expression 
than either cortical thickness or myelination alone (Supple-
mental Fig. 6).

Specifically, the primary axis of transcriptomic varia-
tion as captured by PCA identified in the present study is 
strongly associated with the granularity, or lamination, of 
cROIs. For example, highly granular regions, such as hOc1 
(primary visual cortex) and 4a (a subarea of primary motor 
cortex), appear together on one end of the spectrum while 
more dysgranular or agranular regions, such as many insular 
and frontal cROIs in limbic cortices, appear on the other end 
(Fig. 5). This complements findings that have been found 
previously in the mouse neocortex (Fulcher et al. 2019), as 
well as previous results of a hierarchy of transcriptomic spe-
cialization of the human and primate neocortex. Specifically, 
Burt and colleagues (2018) refer to an anatomical hierar-
chy as “a globally self-consistent ordering of cortical areas 
according to characteristic laminar patterns of interareal pro-
jections.” While the laminar patterns of interareal projec-
tions have not been demonstrated for the recently identified 
human cROIs explored here (though see recent work of the 
structural model proposed by (García-Cabezas et al. 2019), 
the present findings show that similar stages of a hierarchy 
can be transcriptomically dissociable. For example, even 
though areas FG1 and FG2 are cortically adjacent to one 
another in the posterior fusiform gyrus and presumably at a 
similar stage of the visual processing hierarchy, FG1 is more 
transcriptomically similar to OP1 in the parietal operculum 
than FG2, which is more transcriptomically similar to area 
5 M in medial parietal cortex and PGp in lateral parietal 
cortex. The present findings are also consistent with the cor-
tical spectrum proposal, as well as two recent transcriptomic 
findings in three main ways.

First, John and colleagues (2022) implemented a data-
driven approach and identified a cortical spectrum of weakly 
laminated areas on one end and sharply laminated areas on 
the other end broadly across the cortex, but within lobes 
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as well—in which the degree of lamination contributes to 
cortical types. While their results were based on quantita-
tive assessments of histology and immunochemistry, as 
well as MR data in non-human primates, our results iden-
tify that transcriptomics play a role in this potential cortical 
spectrum and that the CT/M ratio serves as a useful metric 
in relating the balance between continuous gradients and 
discrete regions. For example, John and colleagues (2022) 
write: “Cortical types must be understood as discretizations 
of these continuous gradients.” We propose that the CT/M 
ratio serves as a metric bridging the gap between continuous 
gradients and discretized parcellations.

Second and third, respectively, these findings also com-
plement recent studies reporting transcriptomic distinctive-
ness (Wagstyl et al. 2022) with visual cortex on one end and 
frontal cortex on the other in addition to a genetic variation 
along a sensorimotor-association (S-A) cortical axis (Sydnor 
et al. 2021), which has also been associated with the distri-
bution of transmitter receptors (Goulas et al. 2021). Many 
terms aside—from crazy-pavement classically to cortical 
spectrum and transcriptomic distinctiveness modernly—
altogether the present findings incorporate the CT/M ratio 
as a feature that can guide future studies striving to build 
mechanistic models to better understand the relationship 
among gradients, areal parcellations, and cortico-cortical 
connectomics, as well as the role of transcriptomics and the 
CT/M ratio as metrics mediating this complex relationship 
of brain structure, function, cortical networks, and genetic 
expression.

Transcriptomics as a bridge connecting areas 
of functionally distinct cortical networks

While previous findings show that transcriptomics contrib-
ute to the arealization of a cortical network specialized for 
visual processing (Gomez et al. 2019), the present findings 
also show that areas located in different functional networks 
can also be more transcriptomically similar to one another 
than areas located in the same functional network. Specifi-
cally, even though visual areas also cluster together in the 
present study (lower left in Fig. 3b), a subset of visual areas 
are also transcriptomically similar to areas in somatomotor 
cortices (Figs. 3a, b and 4a, b), secondary somatosensory 
cortex (OP1), and posterior parietal cortex (hiP3, hiP5, 
hiP6).

Additionally, even though Ph1 and Ph2 are adjacent to 
one another in parahippocampal cortex, the data-driven 
approach implemented here situates them in distinct tran-
scriptomic clusters with different functions: Ph1 is tran-
scriptomically similar to areas in auditory cortex, the pari-
etal operculum, and posterior parietal cortex, while Ph2 is 
transcriptomically similar to areas in orbitofrontal cortex. 
While there are many other examples, the combination 

of these findings indicate two main points. First, despite 
being located in different functional networks, cortical 
areas may also be transcriptomically similar and share 
a common function despite being commonly associated 
to one cortical network. Second, while a large portion 
of the transcriptomic landscape across the cortical sheet 
exhibits a high degree of spatial autocorrelation where 
nearby anatomical regions have more similar patterns of 
gene expression than distal regions (Burt et al. 2020), the 
genes identified here that exhibit the greatest degree of dif-
ferential expression show that cortical distance is not the 
primary indicator of transcriptomic similarity (Fig. 3d). 
Instead, a likely anatomical feature underlying genetic 
similarity between cortically distant regions in addition 
to those measured here is white matter connectivity—
especially so given that previous studies (Arnatkeviciute 
et al. 2021c) have found a high degree of transcriptomic 
coupling between long-range connectivity hubs over local, 
short-range connections. This is further supported by work 
done in both the human and macaque PFC, showing that 
white matter systematically varies with gray matter in 
which strongly interconnected regions tend to have similar 
laminar structures (Zikopoulos et al. 2018). Findings from 
our work and others would also suggest similar transcrip-
tomics profiles.

Another possible explanation that would link systematic 
variation in gray matter, white matter, and gene expres-
sion would be the developmental origin of cortical regions. 
For instance, Nieuwenhuys and Puelles (Nieuwenhuys and 
Puelles 2015) proposed parcellating the HCC into funda-
mental morphological units (FMUs) that separates regions 
based on their embryological origin. In a broader review 
of multiple parcellations of the primate thalamus, includ-
ing functional, cyto-, myelo-, and geno-architecture-based 
parcellations, Garcia-Cabezas and colleagues (2023) further 
suggest that differential expression of certain genes across 
the neural plate give rise to different cortical ‘types’, which 
they refer to as the ‘onto-phylo neuroanatomy’ paradigm. 
Taken together, a goal for future studies will be to determine 
what anatomical, functional, developmental, and even evo-
lutionary features contribute to the intriguing finding that 
cytoarchitectonic areas can be cortically distant from one 
another and assigned to different functional networks, and 
yet, transcriptomically similar to one another.

Transcriptomics contribute to different scales 
of organization and different parcellations 
of the HCC

The combination of findings across studies indicates that 
different sets of genes contribute to different scales of func-
tional or anatomical organization. For example, while a 
sparse set of genes contribute the most variance to gradients 
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of the HCC (Burt et al. 2018) at a meso-scale, maps within 
a single cortical area at the fine-scale (Gomez et al. 2021), 
and the parcellation of the HCC into distinct cortical areas at 
the macro-scale (present study), largely distinct sets of genes 
contribute to each type of organization. Together, these find-
ings show that transcriptomics contribute to different scales 
of organization of the HCC. But, what about different func-
tional roles of different sets of genes at the same level? For 
example, at the macro-scale considering different parcel-
lations of the HCC (cytoarchitectonic vs. multimodal)? In 
the present study, our data-driven analysis approach showed 
that roughly 10% (or 8–14% if choosing different sets of 
genes; Fig. 4b) of the identified genes were different between 
the cytoarchitectonic and multimodal parcellation. Further-
more, enrichment analyses showed that genes specific to a 
cytoarchitectonic parcellation were generally more related 
to cell maintenance functions that likely contribute to the 
cellular scaffolding necessary for cytoarchitectonic features. 
On the other hand, genes specific to a multimodal parcella-
tion were more associated with ion channel and transport 
functions, which may be related to features related to neu-
ral activation—a component contributing to the borders of 
the multimodal atlas (Glasser et al. 2016). In terms of limi-
tations, a factor that could contribute to these differences 
is ROI size: cytoarchitectonic ROIs tend to be larger than 
multimodal ROIs. However, when looking at the genes that 
overlap between the two parcellations, both sets are heavily 
enriched in synaptic function, furthering the relevance of 
differential expression to cell-to-cell interactions.

Nevertheless, an additional limitation of the present 
study is that the analyses were conducted in brains from 
healthy elderly adults. Thus, a goal of future studies is to 
test whether the genes identified here also contribute to the 
transcriptional landscape of the developing human brain.

Conclusion

Using a data-driven approach, we tested and found that a 
sparse subset of genes differentially contributed to a modern 
cytoarchitectonic parcellation of the HCC. The expression 
of this sparse subset of genes was correlated with the CT/M 
ratio, a metric that bridges the gap among (i) gradients at 
the macro-scale, (ii) areas at the meso-scale, and (iii) cell 
density at the microscale. The combination of these findings 
not only influences future studies examining transcriptomic 
contributions to the recent models and theories discussed 
here (i.e., cortical spectrum, structural model, etc.), but also 
developmental and evolutionary (i.e., onto-phylo neuroanat-
omy paradigm) contributions to the multimodal relationship 
identified across spatial scales in the present study.
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