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Abstract 

A salient neuroanatomical feature of the human brain is its pronounced cortical folding, and 

there is mounting evidence that sulcal morphology is relevant to functional brain architecture 

and cognition. However, our understanding of the relationships between sulcal anatomy, 

brain activity, and behavior is still in its infancy. We previously found the depth of three 

small, shallow sulci in lateral prefrontal cortex (LPFC) was linked to reasoning performance 

in childhood and adolescence (Voorhies et al., 2021). These findings beg the question: what 

is the linking mechanism between sulcal morphology and cognition? To shed light on this 

question, we investigated functional connectivity among sulci in LPFC and lateral parietal 

cortex (LPC). We leveraged manual parcellations (21 sulci/hemisphere, total of 1806) and 

functional magnetic resonance (fMRI) data from a reasoning task from 43 participants aged 

7–18 years (20 female). We conducted clustering and classification analyses of individual-

level functional connectivity among sulci. Broadly, we found that 1) the connectivity patterns 

of individual sulci could be differentiated – and more accurately than rotated sulcal labels 

equated for size and shape; 2) sulcal connectivity did not consistently correspond with that of 

probabilistic labels or large-scale networks; 3) sulci clustered together into groups with 

similar patterns, not dictated by spatial proximity; and 4) across individuals, greater depth 

was associated with higher network centrality for several sulci under investigation. These 

results highlight that functional connectivity can be meaningfully anchored to individual 

sulcal anatomy, and demonstrate that functional network centrality can vary as a function of 

sulcal depth. 

 

.  
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Significance Statement 

A salient, and behaviorally relevant, feature of the human brain is its pronounced cortical 

folding. However, the links between sulcal anatomy and brain function are still poorly 

understood – particularly for small, shallow, individually variable sulci in association 

cortices. Here, focusing on individually defined sulci in lateral prefrontal and parietal regions, 

we offer a novel, anatomically informed approach to defining functional connectomes. 

Further, we demonstrate, for the first time, a link between functional network centrality and 

sulcal morphology.  
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Introduction 

A salient feature of the human brain is its pronounced cortical folding. Indeed, 60–70% of the 

cortex is buried in sulci (Welker, 1990; Armstrong et al., 1995; Zilles et al., 2013). Sulci 

develop prenatally under varying degrees of genetic control through a combination of 

biomechanical forces, including white matter tract formation, and differential cortical tissue 

outgrowth (Im and Grant, 2019; Van Essen et al., 2007; Zilles et al., 2013). Most sulci can be 

identified in every brain; however, they vary across individuals in location and shape –– 

especially those within association cortices that have expanded the most throughout 

evolution, referred to here as putative tertiary sulci (pTS).  

There is mounting evidence that individual variability in sulcal morphology is 

functionally and behaviorally relevant across age groups, species, and clinical populations 

(Artiges et al., 2006; Bouhali et al., 2024; Cachia et al., 2018; Fedeli et al., 2022; Garrison et 

al., 2015; Miller and Weiner, 2022; Maboudian et al., 2024; Natu et al., 2021). Individual 

variability in sulcal spatial configuration and morphology was hypothesized decades ago to 

impact neural efficiency and cognition (Sanides, 1962, 1964). Consistent with this 

hypothesis, features of specific sulci have been linked to variability in a variety of cognitive 

tasks (Aichelburg et al., 2016; Borst et al., 2014; McGugin et al., 2020; Meredith et al., 2012; 

Santacroce et al., 2024; Li et al., 2024; Tissier et al., 2018; Parker et al., 2023; Voorhies et 

al., 2021; Willbrand et al., 2023a, 2023b, 2023c; Yao et al., 2023). 

In parallel to research linking sulcal morphology to cognition, ongoing work links 

sulcal morphology to functional brain organization (Amiez and Petrides, 2014; Amiez et al., 

2013; Bodin et al., 2018; Cordeau et al., 2023; Derrfuss et al., 2009; Eichert et al., 2021; 

Germann et al., 2020; Huster et al., 2014; Sun et al., 2016; Weiner et al., 2014; Zlatkina et al., 

2016), including network connectivity. For example, the presence or absence of a specific 

sulcus in one part of the brain can affect functional connectivity in other lobes (Lopez-
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Persem et al., 2019). Further, adjacent pTS can participate in different large-scale networks, 

leading to the proposal that pTS be used as an individual coordinate space for functional 

connectomes, adopting one facet of precision imaging (Miller et al., 2021; Miller and Weiner, 

2022).  

Prior work implementing a model-based approach identified three pTS in LPFC 

whose depth was related to abstract reasoning task performance across a sample of children 

and adolescents (Voorhies et al., 2021). Thus, a major impetus for this study was to examine 

the functional relevance of sulcal depth: specifically, a possible association with network 

centrality. We focused on sulci in LPFC and lateral parietal cortex (LPC): areas that work 

together to support reasoning and other higher cognitive functions (e.g., Vendetti and Bunge, 

2014; Krawczyk et al., 2011; Stuss and Knight, 2013; Woolgar et al., 2010). In particular, a 

study including the present pediatric sample showed that strength of LPFC-LPC white matter 

and functional connectivity were linked to reasoning performance (Wendelken et al., 2017).  

To test for depth-connectivity relations, we first characterized functional connectivity 

patterns among sulci – i.e., a sulcal functional connectome. To do so, we leveraged manual 

labels of 1806 sulci (both large and pTS in LPFC and LPC, including newly identified LPC 

sulci (Willbrand et al., 2023c) from 43 participants aged 7–18 years. We then followed a 

four-pronged approach. First, we tested whether manually labeled sulci could be 

distinguished based on their patterns of functional connectivity. Second, we tested how sulci 

clustered based on connectivity patterns. Third, we computed graph metrics of network 

centrality and tested whether greater depth of the three pTS previously implicated in 

reasoning was associated with higher centrality. Fourth, we conduced control analyses to 

validate our novel sulcal connectomics approach. Altogether, we propose that anchoring 

functional connectivity to sulcal anatomy is a promising way forward, and demonstrate a 

novel link between sulcal anatomy and network centrality. 
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Materials and Methods 

Participants 

Participants were selected from the Neurodevelopment of Reasoning Ability (NORA) dataset 

(Wendelken et al., 2011). Participants were all right-handed native English speakers, ranging 

in age from 7 to 18 (Table 1). 25/43 of these participants were also included in the prior 

morphological study (Voorhies et al., 2021). All participants underwent preliminary 

screening as part of the NORA study to include only right-handed, neurotypical children and 

adolescents. Participants and their parents gave their informed assent and/or consent to 

participate in the study, which was approved by the Committee for the Protection of Human 

Participants at the University of California, Berkeley. 

 Participants were selected from the NORA study based on screening for usable T1 

and fMRI data on any assessment, using MRIQC (23.1.0, Esteban et al., 2017) and manual 

inspection for scanner artifacts using FSLeyes (McCarthy, 2018). For fMRI, we required 

three complete runs of fMRI with 165 volumes and estimated gross motion measured by 

mean framewise displacement < 0.5 mm (Power et al., 2014), and runs combined > 5 min 

worth of frames free from significant motion (framewise displacement < 0.5 mm or 

DVARS < 1.5). These criteria led us to retain 46% (49/107) of participants. Of these, two 

were excluded because their LPFC sulci had not been labeled. Four additional participants 

were excluded because they were missing one of the pTS that is not present universally (one 

participant did not have a rh.pimfs in LPFC, and three participants did not have a lh.slocs-v in 

LPC); this reflects normal variation for these two sulci. Thus, 43 participants with all sulci 

present in both hemispheres were included in our analyses. 

 The age and gender distributions of these participants are reported in Table 1, along 

with their performance on a standard test of reasoning (Wechsler Intelligence Scale for 
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Children (WISC-IV) Matrix Reasoning task; Wechsler, 1949), degree of head motion, and 

amount of high-quality fMRI data used in analyses. 

 

Table 1. Participant characteristics and demographics  

Age (years), mean (range) 14.26 (7.12–18.86) 

Gender (female/male) 20/23 

Matrix reasoning (t-score), mean (range) 58.43 (43.00–81.00) 

Head motion (mean framewise displacement in mm), mean 

(range) 

0.22 (0.08–0.43) 

fMRI data after censoring (minutes), mean (range) 12.67 (5.47–16.20) 

Annual Household Income (32 responses)   

            $16,000 to $99,999 14 

            $100,000 to $200,000 15 

            Over $200,000 3 

Highest Degree Earned by Parent/Guardian (36 responses)   

            High School/GED/Associate degree 9 

            Bachelor’s degree 13 

            Master’s degree/Doctorate/Professional 14 

Racial Categories (41 responses)   
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            White 20 

            Black or African American 7 

            Asian 2 

            More Than One Race 12 

Parent/guardian-reported demographics. Only ~50% of participants responded to the question 

of whether they were Hispanic or Latino. The Matrix Reasoning score was not available for 

one participant. 

fMRI task 

Functional connectivity was measured based on fMRI data collected during performance of a 

reasoning task (Figure 1; see also Wendelken et al., 2011). The data were derived from a 

blocked fMRI task design, with three runs of 5 minutes 25 seconds each, for a total of 16.3 

minutes. The current analyses focus on functional connectivity across all task and rest blocks; 

thus, we measured general functional connectivity (Elliott et al., 2019) in the context of a 

reasoning task. 

 

Figure 1. fMRI task paradigm. Each participant completed three runs of 5.4 min each of a 

reasoning task. Each run included three 90-s task blocks of 15 trials of 6 seconds each: two 

1st-order blocks – one shape block and one pattern block (depicted in green and yellow, 
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respectively) – and one 2nd-order block (blue). Task blocks alternated between 1st- and 2nd-

order within each run, separated by 20-s rests, along with a 6-s and 10-s rest at the start and 

end of each run, respectively. On 1st-order trials, participants saw an array of four shapes 

with various pattern fills and indicated whether either row of stimuli had the same shape (the 

Shape condition) or fill pattern (the Pattern condition). In the shape trial depicted, neither row 

of stimuli have the same shape; thus, the correct answer is ‘no’. On 2nd-order (Match) trials, 

participants indicated whether the two rows of stimuli in the array matched on the same 

feature (shape or pattern). In the match trial depicted, both rows of stimuli match on pattern; 

thus, the correct answer is ‘yes’. 

 

Each run included three 90-second task blocks, one for each of three task conditions 

described below (Figure 1). The task blocks were separated by 20-seconds of rest, with 6- 

and 10-second rest at the start and end of each scan, respectively. In total, there were 13.5 

minutes of task and 2.8 minutes of rest across the scan session. All participants performed the 

task well above chance-level accuracy, as reported in a previous fMRI study involving 6–18-

year-olds from which the present sample was drawn (mean ± SD for 1st-order relations: 92.8 

± 6.6%; 2nd-order relations: 90.0 ± 9.6%; Wendelken et al., 2011). 

With regard to the specific cognitive demands of the task, participants viewed an 

array of four simple patterned shapes and had to make a decision about the relations between 

two stimuli in a row (1st-order relations) or the relation between the two rows of stimuli 

(2nd-order relations). There were three task conditions, presented in separate blocks of 15 

trials each: 1st-order shape relations, 1st-order pattern relations, and 2nd-order relations (for a 

total of 135 trials). In the 1st-order conditions, participants judged whether the pair of stimuli 

in each row shared a particular feature: shape or fill pattern (e.g., on a shape trial, judging that 

a checkered circle and a solid square do not match on shape). In second-order reasoning 
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blocks, they judged whether two pairs of stimuli matched according to the same feature – that 

is, the shape or fill pattern (e.g., judging that the top pair (a striped triangle and circle) and 

bottom pair (a solid square and cross) both match according to pattern). 

MRI data acquisition 

Brain imaging data were collected on a Siemens 3T Trio system at the University of 

California Berkeley Brain Imaging Center. T1-weighted MPRAGE anatomical scans 

(TR = 2300 ms, TE = 2.98 ms, 1 × 1 × 1 mm voxels) were acquired for cortical morphometric 

analyses. fMRI data were acquired using gradient-echo EPI sequence, TR = 2000 ms, 

TE = 25 ms, 33 axial slices, 2.0 × 1.8 × 3.0 mm voxels, no interslice gap, flip angle = 90°, 

field of view = 230 mm, 120 volumes per run).  

Cortical surface reconstruction 

FreeSurfer’s automated segmentation tools (Dale et al., 1999; Fischl and Dale, 2000) 

(FreeSurfer 7.1.0) were used to generate cortical surface reconstructions. Each anatomical 

T1-weighted image was segmented to separate gray from white matter, and the resulting 

boundary was used to reconstruct the cortical surface for each participant (Dale et al., 1999; 

Wandell et al., 2000). Each reconstruction was visually inspected for segmentation errors, 

and these were manually corrected when necessary. 

Manual labeling of LPFC and LPC sulci 

To investigate the network defined by the LPFC–LPC sulcal features, 42 sulci (10 LPFC and 

11 LPC in each hemisphere) were manually defined for each participant and hemisphere. 

These anatomical features were defined according to the most recent atlas by Petrides 

(Petrides, 2019) and our previous work (Voorhies et al., 2021; Willbrand et al., 2023c). The 

anatomical locations are illustrated in Figure 2, and all 1806 sulcal definitions in all 
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participants can be found in Extended Data Figure 2-1. The location of each sulcus was 

confirmed by trained independent raters (W.I.V., E.H.W., J.Y., T.G., Y.T.) and finalized by a 

neuroanatomist (K.S.W.). Surface vertices for each sulcus were selected using tools in 

FreeSurfer, guided by the pial and smoothwm surfaces (Weiner et al., 2018; Miller et al., 

2021), and saved as surface labels for vertex-level analysis. We have indicated pTS with 

asterisks in Figures 2, 4–7; however, future studies using novel in-vivo developmental 

imaging in relation to classic post-mortem techniques are required to definitively determine 

which are secondary vs. tertiary sulci based on their emergence in gestation (Chi et al., 1977) 

in addition to their depth and surface area. 

 

 

Figure 2. Lateral prefrontal (LPFC) and lateral parietal (LPC) sulcal definitions. 

(A) Manual sulcal definitions on an example cortical surface reconstruction of a right 

hemisphere. *Putative tertiary sulcus (pTS). See Extended Data Figure 2-1 for individual 
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sulcal definitions for all participants. (B) Manual definitions (black outlines) overlaid on the 

Destrieux atlas generated using automated methods (Fischl, 2004; Destrieux et al., 2010). 

Note that many of the LPFC and LPC sulci (black outlines) do not align with the automated 

definitions of these structures. Abbreviations: ifs: inferior frontal sulcus; sfs-p: superior 

frontal sulcus-posterior; sfs-a: superior frontal sulcus-anterior; pmfs-p: posterior middle 

frontal sulcus-posterior; pmfs-i: posterior middle frontal sulcus-intermediate; pmfs-a: 

posterior middle frontal sulcus-anterior; pimfs (combining pimfs-v and pimfs-d): para-

intermediate frontal sulcus; aalf: ascending ramus of the lateral fissure; prts: pretriangular 

sulcus; lfms: lateral frontomarginal sulcus; sB: sulcus of Brissaud; pips: intermediate parietal 

sulcus-posterior; mTOS: transverse occipital sulci-medial; lTOS: transverse occipital sulcus-

lateral; IPS-PO: paroccipital intraparietal sulcus; IPS: intraparietal sulcus; cSTS1,2,3: three 

branches of the caudal superior temporal sulcus; aipsJ: intermediate parietal sulcus of Jensen-

anterior; slocs-v: supralateral occipital sulcus-ventral. 

Morphological features 

Sulcal depth was defined by maximum ‘sulc’ value estimated by FreeSurfer for each sulcal 

label. Sulcal area was defined by total surface area (mris_anatomical_stats). 

fMRI data preprocessing 

We drew the raw fMRI data for included participants from the previous dataset, and 

preprocessed them de novo. Here, we used fMRIprep version 21.0.1 (Esteban et al., 

2019)[RRID:SCR_016216], which is based on Nipype 1.6.1 (Gorgolewski et al., 

2011)[RRID:SCR_002502]. Each T1w (T1-weighted) volume was corrected for intensity 

non-uniformity using N4BiasFieldCorrection v2.3.3 (Tustison et al., 2010) and skull-stripped 

using antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain surfaces were 

reconstructed using recon-all from FreeSurfer v7.1.0 (Dale et al., 1999)[RRID:SCR_001847], 
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and the brain mask estimated previously was refined with a custom variation of the method to 

reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 

Mindboggle (Klein et al., 2017)[RRID:SCR_002438]. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM) was performed on the 

brain-extracted T1w using fast (Zhang et al., 2001, FSL v6.0.5, RRID:SCR_002823). 

 For each of the three runs, the initial three volumes were excluded, functional data 

was slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 

1996)[RRID:SCR_005927] and motion corrected using mcflirt (Jenkinson et al., 2002)(FSL 

v6.0.5). This was followed by co-registration to the corresponding T1w using boundary-

based registration (Greve and Fischl, 2009) with six degrees of freedom, using bbregister 

(FreeSurfer v7.1.0). Motion correcting transformations, BOLD-to-T1w transformation and 

T1w-to-template (MNI) warp were concatenated and applied in a single step using 

antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. The functional series were 

then sampled to native mid-grey matter surface by averaging across the cortical ribbon. 

Physiological noise regressors were extracted by applying CompCor (Behzadi et al., 2007). 

For aCompCor, six principal components were calculated within the intersection of the 

subcortical mask and the union of CSF and WM masks calculated in T1w space, after their 

projection to the native space of each functional run. Framewise displacement (Power et al., 

2014) was calculated for each functional run using the implementation of Nipype. 

 Following preprocessing via fMRIPrep, fMRI data were despiked (AFNI 3Ddespike, 

default c1 = 2.5, c2 = 4.0) and bandpass filtered (AFNI 3DBandpass, 0.008–0.1 Hz). 

Nuisance regressors were filtered and regressed from the timeseries (Nilearn 

image.clean_img). The confounds included linear trends, the first 5 aCompCor components, 

and 24 motion parameters (Friston et al., 1996). In addition to the tools specifically 

mentioned, this denoising and further data analysis relied on open-source Python packages 
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including NiBabel [RRID:SCR_002498](Brett et al., 2022), NumPy 

[RRID:SCR_008633](Harris et al., 2020), SciPy [RRID:SCR_008058](Virtanen et al., 2020) 

and Pandas [RRID:RRID:SCR_018214](McKinney, 2010). 

Measurement of sulcal functional connectivity and correction for spatial 

autocorrelations 

We computed functional connectivity between all 42 sulcal labels for each participant. To 

this end, the mean timeseries of all vertices in each sulcal label were averaged. Functional 

connectivity was measured by pairwise Pearson correlations between the timeseries for each 

sulcal label across all three runs, scrubbing frames associated with large motion spikes 

(framewise displacement < 0.5 or DVARS < 1.5). The correlation values were subsequently 

normalized to z-scores via a Fisher transformation, and then combined into a 42 × 42 inter-

regional correlation matrix for each participant. The analyses were based on the full 

acquisition with task and rest blocks concatenated. To further mitigate effects of in-scanner 

head motion that might skew network definition for example by inflating short-distance 

connectivity, mean framewise displacement was residualized from the data prior to analyses 

of network organization and included as a covariate in analyses on associations with age. 

 The results featured here control for spatial autocorrelation, which may artificially 

inflate functional connectivity between adjacent sulcal components. Spatial autocorrelation 

was estimated and controlled for per participant and hemisphere as follows: 1) Functional 

connectivity and corresponding geodesic distances were calculated for nodes in 32k meshes 

(Connectome Workbench, v1.4.2, RRID:SCR_008750, Marcus et al., 2011) of cortical mid-

grey matter, excluding the medial wall (Python library tvb-gdist 1.0.3; https://github.com/the-

virtual-brain/tvb-gdist). 2) Spatial autocorrelation was modeled as a function defined by a 

rate of exponential distance-dependent decrease and the constant baseline level to which it 

decays, and fitted to the data divided into 1 mm bins using gradient descent, similar to Shinn 
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et al. (2023). For all participants and hemispheres, the positive bias of adjacent connections 

was found to taper off at < 1 cm. To define a regressor that describes the short-distance 

positive bias and does not change the connectivity values of sulcal pairs at longer distances 

than the participant’s estimated range of spatial autocorrelations, the constant baseline level 

was subtracted from the fitted function. 3) Minimum geodesic distance was extracted for the 

vertices of each sulcal label pair of the participant. 4) Based on the autocorrelation function 

and calculated minimum distance, each sulcal label pair was matched with the expected 

positive bias. 5) Association between the bias regressor and connectivity of the sulcal 

network was estimated for each hemisphere and participant using least squares regression. 

Connectivity values were then residualized for the estimated regression with the bias 

variable. 6) The corrected within-hemisphere connections were combined with between-

hemisphere connections for further analysis.  

 While spatial autocorrelations are an important potential confound, correcting for 

them may diminish true short-distance connectivity and confound network topological 

measures (Shinn et al., 2023). Thus, we also ran supplementary analyses in which we did not 

correct for them. 

Discriminability of sulcal connectivity patterns 

We performed a classification analysis testing the discriminability of the sulci from one 

another based on their connectivity patterns. The multiclass classification problem was split 

into 861 binary classification problems (one-vs-one approach) (Galar et al., 2011). We chose 

a support vector machine (SVM) as a classifier, given the small, high-dimensional sample, 

and employed a linear kernel to avoid overfitting. SVM were implemented using scikit-learn 

[RRID:SCR_002577](Pedregosa et al., 2011) (based on LIBSVM, default regularization 

C = 1), and trained to discriminate each pair of sulci based on their functional connectivity 

fingerprint. To avoid having the classifications be driven by strong autocorrelations, the 
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connectivity between the two sulci being tested was excluded from each binary classification, 

such that the classification was based on the connectivity strength between each of these two 

sulci and the 40 remaining sulci. Connectivity weights of each participant were normalized to 

[0,1], and each feature to [0,1] during cross-validation. Classification performance was 

assessed using leave 3 participants out cross-validation repeated 10 times, and accuracy (the 

percentage of samples predicted correctly) was measured as the mean value across folds. 

Empirical p-values were generated against the null hypothesis that connectivity fingerprints 

and sulcal labels are independent, using permutation testing (100 permutations of each fold) 

and correcting for multiple comparisons using the Benjamini-Hochberg false discovery rate 

(FDR) (Benjamini and Hochberg, 1995). 

Control analyses evaluating sulcal functional specificity 

To test whether sulci are functionally relevant, we conducted control analyses comparing 

functional connectivity and classification accuracy for manually labeled sulci vs. null models 

generated by spin testing (Alexander-Bloch et al., 2018). For each sulcal definition in each 

individual, we generated 1000 rotated parcels of the same size and shape (code adapted from 

https://github.com/netneurolab/markello_spatialnulls; Markello and Misik, 2021). These 

rotated sulcal definitions were required to fall within the envelope of the original LPFC or 

LPC sulci and were combined into 1000 rotated sulcal networks per participant (Figure 3A). 

We then compared functional connectivity strength and classification accuracy between the 

manual and rotated labels. 

Probabilistic sulcal labels 

To test the necessity of manual labeling in individual participants – a laborious process that 

requires anatomical expertise – we computed probability maps for all sulci based on cortical 

overlap between participants. Probabilistic labels were generated for each participant based 
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on the remaining (N-1) participants in the cohort, establishing spatial correspondence 

between participants using spherical surface registration to the fsaverage template (Fischl et 

al., 1999). Probabilistic labels were thresholded to include vertices that were included in a 

given sulcal label for at least 33% of participants. In cases of overlap between probabilistic 

labels, we assigned a vertex to the sulcus with greater overlap between participants.  

Despite this liberal clustering threshold, four highly variable sulci did not have any 

vertices in their probabilistic definition (lh.slocs-v and rh.aipsJ in all 43 participants, lh.aipsJ 

and rh.pmfs_a in 42); this, in and of itself, speaks to the fact that probabilistic labels (not to 

mention standard atlases) do not always accurately represent the anatomy of individual 

participants. Sulcal networks based on the existing probabilistic labels were then calculated 

as in the main analysis. 

Connectivity-based clustering 

To detect groups of sulci with similar sulcal connectivity profiles, connectivity matrices were 

averaged into a mean connectivity matrix, and the mean matrix was clustered using an 

unsupervised community detection algorithm (Infomap) (Rosvall and Bergstrom, 2008). 

Clusters were investigated at density thresholds 0.01–0.5 in steps of 0.01, preserving the 

indicated proportion of the strongest weights at each iteration. Results at different thresholds 

were combined into a "consensus" clustering (similar to e.g. Gordon et al., 2017; Hwang et 

al., 2017; Laumann et al., 2015; Marek et al., 2019; Moore et al., 2024; Power et al., 2011; 

Rajesh et al., 2024), i.e., we did not consider the sparsity of the network. This grouping 

should be considered a rough summary view mainly used for visualization, also given that the 

group-level clusters may not mirror individual clustering (Laumann et al., 2015; Smith et al., 

2023). 

The representativeness of the group-level clustering at the individual participant level 

was assessed as follows. First, clustering was applied to individual-level networks. For each 
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label pair, co-clustering was defined as the number of times each pair of labels was found in 

the same cluster, at clustering thresholds ranging from the lowest threshold at which the 

sulcus was clustered with at least one other sulcus to the threshold at which all sulci were 

clustered into one. Co-clustering counts were collapsed into a binary estimate indicating 

whether the pair clustered together for at least three of the investigated thresholds. Finally, an 

agreement matrix described the frequency of co-clustering per sulcal pair, presented as a 

proportion of participants. 

Sulcal associations with canonical large-scale resting-state fMRI networks 

To determine how individual sulci associate with previously characterized large-scale 

functional networks, we assessed the similarity of each sulcus and 14 networks in the 

Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas (Hermosillo et al., 

2024), derived from probabilistic network maps from resting-state fMRI data, that were 

largely invariant in network topography across roughly 6000 9–10 year-olds. Network seed 

masks were defined at 61% probability in the atlas, producing reasonably sized seeds for 

connectivity analysis. The atlas labels were projected from standard space (fs_LR_32) to the 

native surfaces of each participant using Connectome Workbench tools and custom scripts. 

The mean timeseries of each network label and sulcus (same hemisphere) were then 

correlated as above. 

Graph network metrics 

Based on the 42 × 42 matrices of sulcal connectivity, we derived graph metrics for each node 

(sulcus) in each participant. Individual nodes were characterized using three topological 

measures describing their level of centrality in the LPFC-LPC sulcal network: 1) degree, or 

the number of links connected to the node; 2) betweenness, or the frequency that a node is on 

the shortest path connecting other nodes; and 3) participation coefficient, a measure of how 
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evenly distributed a node's connections are across clusters (Rubinov and Sporns, 2010). To 

account for differences in overall connectivity strength across participants, the graph analyses 

used binarized networks and area under the curve (AUC) estimates, integrating values across 

0.01–0.2 density. Participation coefficient was calculated using the group-level clusters 

shown in Figure 4B.  

 For each graph metric, the sulcal components scoring consistently high across 

participants were defined by comparison to the mean of all values for a given participant 

using two-tailed paired t-tests, and FDR-corrected for multiple comparisons across all 42 

nodes.  

 Graph metrics were computed using the Python port (https://pypi.org/project/bctpy) 

of Brain Connectivity Toolbox (BCT; Rubinov and Sporns, 2010). Statistics were computed 

using Scipy and statsmodels[RRID:SCR_016074](Seabold and Perktold, 2010). For matrix 

visualization, nodes were ordered both by clusters and within each cluster to maximize the 

number of edges close to the main diagonal, using simulated annealing (BCT 

reorder_matrix). Visualizations were created using Matplotlib [RRID:SCR_008624](Hunter, 

2007), Seaborn[RRID:SCR_018132](Waskom, 2021) and NetworkX 

[RRID:SCR_016864](Hagberg et al., 2008). Spring layout was generated using the Kamada-

Kawai method (Kamada and Kawai, 1989). 

Testing associations between sulcal depth and network centrality for three pTS in 

LPFC  

Building on the previous finding that the depth of right pimfs, pmfs-a, and pmfs-i pTS (all 

assigned to the blue cluster, Figure 4B) predicted reasoning performance beyond age 

(Voorhies et al., 2021), we tested whether the depth of these sulci also related to differences 

in functional organization during reasoning. First, we tested, for the left and right hemisphere 

counterpart of each sulcus, whether its depth relates to its graph metrics (nodal degree, 
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betweenness, and/or participation coefficient). Associations between depth and each metric 

were tested using ordinary least squares regression, controlling for age effects on depth and 

functional connectivity by including it as an additional explanatory variable (two-tailed tests, 

FDR-corrected across the 18 combinations of the six sulci and three graph metrics). We 

followed up with analogous regression analyses with individual edges as dependent variables 

to pinpoint the pairwise connections that drove the significant associations (one-tailed tests, 

FDR-corrected across the 42 connections investigated per sulcus). 

Code accessibility 

Scripts to perform data preprocessing and statistical analyses will be freely available with the 

publication of the paper on GitHub (https://github.com/cnl-berkeley/stable_projects). 

Requests for further information or raw data should be directed to the corresponding authors. 

Results 

Classification analyses 

Sulci exhibited dissociable functional connectivity profiles  

To assess whether (or which) sulci could be differentiated on the basis of their functional 

connectivity, we tested whether any two sulci for a given participant could be classified based 

on their connectivity fingerprints. Indeed, the SVM classifier could successfully discriminate 

each pair of sulci well above chance level (i.e., 50%) across participants, with very high 

accuracy for most – but not all – pairs of sulci (mean: 96%, range: 71–100%; FDR-corrected 

p < 0.01). Overall, then, sulci generally had differentiable connectivity profiles, whereby two 

sulci could be distinguished on the basis of their functional connectivity with 96% accuracy 

on average.  
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Functional connectivity was meaningfully related to sulcal anatomy  

To test whether sulci are functionally relevant, we conducted control analyses comparing 

functional connectivity and classification accuracy for manually labeled sulci vs. null models 

generated by spin testing (Alexander-Bloch et al., 2018), involving 1000 rotated parcels of 

the same size and shape for each manually labeled sulcus. 

We first examined overall distributions of functional connectivity among all pairs of 

sulcal vs. rotated labels. We observed a more dynamic range of correlation values for actual 

sulci than for rotated labels – including both stronger and weaker values (sulci: mean 0.29, 

range -0.52–1.24, SD 0.27; rotated labels: mean 0.27, range -0.13–0.91, SD 0.14). Levene's 

test confirmed that the variances for pairwise connectivity strength were not equal, 

F1,5674 = 857.70, p < 0.0001). Critically, we then tested whether pairwise classification 

accuracy across participants was higher for veridical sulcal networks than our null model. As 

predicted, we confirmed that classification accuracy was significantly higher for sulcal labels 

than for rotated labels (Figure 3B; mean accuracy [range] for the three target sulci 

bilaterally: 0.93 [0.78–1.0]; rotated labels: 0.74 [0.50–.87]; t164 = 34.69; p < 0.0001). Thus, 

compared with equally sized and shaped random patches of cortex, actual sulci had a greater 

dynamic range of connectivity values, indicating a more sensitive unit of analysis, and the 

pTS under investigation had substantially more discriminable connectivity profiles. 
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Figure 3. Sulcal specificity of functional connectivity fingerprints compared to null 

models generated by spin testing. (A) Manual sulcal definitions in LPFC (upper row) and 

LPC (lower row) and a set of rotated labels in one of 1000 permuted networks, in an example 

participant. Colors match Figure 2A. (B) Density plot of classification accuracy for selected 

manual sulcal definitions and the corresponding null model (1000 rotated labels per sulcus), 

showing the number of accurate classifications across all sulcal pairs and participants. 

Classification accuracy of 1 would correspond to perfect discrimination for a sulcal pair. The 

plot shows results for the target sulci in LPFC (bilateral pimfs, pmfs-a, pmfs-i, pmfs-p), as 

well as the pTS in LPC included in exploratory analyses (aipsJ, slocs-v). 

Clustering analyses 

Sulcal clustering within and across LPFC and LPC on the basis of functional connectivity 

Next, we sought to test whether sulci clustered into groups with similar connectivity profiles. 

We first conducted this analysis at the group level; we then conducted a co-clustering 

analysis at the individual level to quantify the extent to which these clusters represented 

individual-level connectivity. 
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We identified five sulcal groupings in the 0.01–0.5 density range at the group level 

(Figure 4A): one consisting of LPFC pTS (dark blue), one of pTS in both LPFC and LPC 

(purple), and two consisting of large sulci and pTS in both LPFC and LPC (red, green), and 

one of larger LPC sulci (yellow). In addition, two sulci (slocs-v, cyan; cSTS3, medium blue) 

formed two distinct clusters with their interhemispheric counterparts. This analysis reveals, 

for the first time, sulcal-functional coupling both within and between LPFC and LPC sulci 

(Figure 4B). 

Focusing on these five clusters derived from the group mean network (Figure 4B), 

we next assessed whether they generalized to individual participants (Figure 4C). Analyses 

in individual participants identified 5–10 clusters per participant (mean = 7), where each 

cluster was defined as including more than one sulcus and the cluster count was the 

maximum number identified among the clustering thresholds. The pairs of sulci within the 

same group-level cluster were assigned together at multiple thresholds in 80% of participants, 

on average. We observed the highest degree of agreement for the two LPC clusters – one 

comprising large sulci (yellow in Figure 4C: 94%), and the other including both large sulci 

and pTS ( medium blue: 91%), followed by the LPFC cluster of pTS that included sulci 

previously implicated in reasoning (dark blue: 87%) and an LPFC-LPC cluster of pTS 

(purple: 86%). We observed lower agreement for a large LPFC-LPC cluster including both 

large sulci and pTS (green: 76%) and a small LPC cluster of pTS comprising only bilateral 

slocs-v, a pTS (cyan: 70%). Notably, even the lowest of these scores (70%) was significantly 

higher than the 58% co-assignment for pairs that did not belong to the same group-level 

cluster (t42 = 10.83, two-tailed p < 0.0001; the lowest value was 19%, between lh.mTOS (an 

LPC pTS) and lh.lfms (an LPFC pTS). Thus, there was variable agreement between 

individual and group-level cluster assignments.  
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 Here, we highlight five specific findings based on these group- and individual-based 

connectivity-based clustering analyses. First, most relevant to the current investigation, the 

LPFC pTS whose morphological features have been previously linked to individual 

differences in reasoning performance – right-hemisphere pimfs, pmfs-a, and pmfs-i 

(Voorhies et al., 2021), along with left pimfs (Willbrand et al., 2022, 2023b, 2024) – tended 

to cluster together (dark blue cluster in Figure 4B). Second, several pTS in LPFC clustered 

with aipsJ, a pTS in LPC (shown in purple); they may be anatomically connected by the 

middle branch of the superior longitudinal fasciculus, which develops late (Liang et al., 2022) 

and is theorized to support communication between the dorsal and ventral attention systems 

(Thiebaut de Schotten et al., 2011; Parlatini et al., 2017; Suo et al., 2021). This association 

could be clinically relevant, as the aipsJ is used as a corridor in neurosurgery to reach deeper 

structures while minimizing damage to other structures (Tomaiuolo and Giordano, 2016; 

Tomaiuolo et al., 2022). Third, inferior portions of the intraparietal sulcus (IPS-PO; in yellow 

cluster) clustered separately from more dorsal portions of the IPS, which clustered (shown in 

red) with the inferior frontal sulcus (ifs). Fourth, the superior frontal sulcus (sfs) tended to 

cluster with a subset of branches of the superior temporal sulcus (STS) and pTS in inferior 

frontal cortex (shown in green), and fifth, newly identified pTS in LPC (slocs-v) often 

clustered by themselves (shown in cyan), although these were the least reliable groupings 

across participants. 
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Figure 4. Lateral frontoparietal functional connectivity based on individual sulcal 

morphology. (A) Group-averaged (N = 43) network clusters identified at 0.01–0.5 density 

thresholds. Colors reflect cluster identity; white refers to nodes that are isolated or form a 

single-sulcus cluster at the threshold. *Putative tertiary sulcus (pTS). (B) Clusters selected to 
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capture distinctions across at least two thresholds in the group results, displayed on the 

cortical surfaces of an example participant. The colors correspond to those in panel A. 

(C) Co-clustering at the individual level in relation to the group-level results. This matrix 

displays the percentage of participants for whom two sulci clustered together in individual-

level clustering analyses. The sulci are grouped based on the group-level clustering results, as 

indicated by the colored bars along the axes. Lighter colors indicate sulcal pairs that clustered 

together at more than one threshold for a larger number of participants. Pairs of sulci 

assigned to the same group-level cluster are delineated by black outlines; relatively strong 

agreement across participants is observed for these pairs. 

Associations with large-scale canonical resting-state fMRI networks 

Many sulci in these clusters showed correlations with one or more large-scale canonical 

resting-state networks in the MIDB Precision Brain Atlas (Hermosillo et al., 2024), 

consistently across subjects and to a greater degree than for corresponding rotated labels 

(Figure 5). Sulci within the red cluster (large sulci and pTS in LPFC and LPC) were 

associated with three networks: frontoparietal, dorsal attention, and cingulo-opercular. Sulci 

in the yellow cluster (large sulci in LPC) correlated most strongly with the dorsal attention 

and visual networks, and those in the green cluster (large sulci and pTS in LPFC and LPC) 

correlated most with the default mode network. By contrast, sulci in the dark blue cluster 

implicated in reasoning (pTS in LPFC), along with the cyan cluster (pTS in LPC) and 

medium blue cluster (large sulci and pTS in LPFC and LPC), were not clearly associated 

with any of these large-scale networks, and in the purple cluster (pTS in LPFC and LPC) only 

two sulci systematically associated with the frontoparietal network. Thus, we see overlap 

between some, but not all, networks defined based on individual anatomy and large-scale 

canonical networks. That said, future investigations should explore the correspondence of 
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these sulcal networks and other large-scale networks in the literature, as network definitions 

and nomenclature vary across the literature (Uddin et al., 2023). 

 

 

Figure 5. Associations of LPFC and LPC sulci with canonical large-scale resting-state 

fMRI networks. Correlation strength (compared to zero via a one-sample t test) between 

each sulcus and each large-scale canonical network (arranged by clusters as in Figure 4B). 

*Putative tertiary sulcus (pTS). The color scale reflects t-scores ranging from zero to positive 

values. Dots indicate associations that were significantly more positive/negative for sulci 

compared to rotated labels (permuted two-tailed p < .05). In general, larger sulci, such as 

those in the red, green, and yellow clusters, showed pronounced correlations with one or 

more large-scale networks; by contrast, many pTS, including those in the blue and purple 

clusters, showed less robust associations with these networks. 

Addressing a possible confound of spatial autocorrelations 

One potential confound is that neighboring sulci might have inflated connectivity due to 

spatial autocorrelations, known to arise in BOLD fMRI from various physical, physiological, 

and biological sources that are not all related to functional organization (Burt et al., 2020; 

Power et al., 2012; Shinn et al., 2023). As such, we controlled for spatial autocorrelations in 

our main analyses by estimating and regressing out the short-distance positive correlation 
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bias on an individual basis. We found that the clustering patterns could not be explained by 

spatial autocorrelations among neighboring sulci, for two main reasons. First, the preferential 

correlation among neighboring sulci in the LPFC pTS cluster (dark blue in Figure 4B) was 

observed despite being penalized via correction for spatial autocorrelations (see Extended 

Data Figure 6-1 for all connectivity fingerprints with and without controlling for spatial 

autocorrelations). Second, a number of geographically distant sulci clustered together – for 

example, the pmfs-p and the aipsJ (purple in Figure 4B) – demonstrating a novel functional 

connection between pTS across LPFC and LPC. 

The main findings were replicated also when not controlling for spatial 

autocorrelations (data available upon request). For example, classification accuracies were 

similarly very high (mean: 96%, range: 70–100%) – albeit not quite as high (t41 = 3.81, p < 

0.001). The boost in accuracy with correction for autocorrelations was observed for the sulci 

that were closest together (< 5 mm geodesic distance) (t971 = 2.43, p < 0.05), as expected, and 

also for pairs of homologous sulci across the two hemispheres (t20 = 2.98, p < 0.01). 

Clustering without control for spatial autocorrelations replicated key findings, e.g. the blue 

and purple pTS clusters with high co-clustering across participants, but also suggested 

possible additional distinctions. 

LPFC-LPC sulcal network topology and measures of centrality 

We next looked more closely at the connectivity patterns of individual sulci. Perhaps 

unsurprisingly, sulci had on average the strongest connectivity with other sulci that co-

clustered with them (Figure 6A, B; Extended Data Figure 6-1). To identify sulci with 

relatively high or low network connectivity, we compared measures of centrality for a given 

node to the average across nodes for that participant. We examined three measures of 

centrality: degree, betweenness, and participation coefficient (see Materials and Methods for 

descriptions). 
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 Notably, almost all LPFC pTS scored below average with regards to at least one (and 

often more) centrality measure: bilateral pimfs, pmfs-a, and lfms, aalf, and prts, along with 

right pmfs-i (Figure 6C). By contrast, left pmfs-i showed average centrality values, and right 

pmfs-p (along with bilateral aipsJ, a pTS in LPC that clustered with it) scored above average 

on participation coefficient, with trend-level effects for the other centrality measures. These 

results were very similar when not controlling for spatial autocorrelations (data available 

upon request). In sum, these results suggest that most LPFC pTS have relatively sparse 

connectivity; these results can be contrasted with LPC sulci IPS and IPS-PO, which scored 

consistently high in the centrality metrics across participants (each sulcus p < 0.05, FDR 

corrected). None of the metrics were linearly associated with head motion (an association 

was detected for only 1/126 tests: betweenness of rh.ifs was negatively associated with mean 

FD at β = -2.269, p < 0.03, uncorrected for multiple comparisons). It should be noted that the 

sulcal network covered large swaths of association cortex relevant for reasoning; these results 

may not generalize to broader or more granular networks. These graph metrics characterize 

the network at the group level; individual variability in centrality is explored below in 

relation to sulcal depth. 

Observing that the graph analyses attributed higher centrality to large sulci, such as 

those in IPS and IPS-PO, than to small ones, such as the pTS in the blue LPFC cluster, we 

explicitly tested whether functional connectedness was systematically related to sulcal 

surface area. Specifically, we tested the relation between graph metrics and surface area with 

linear mixed effect models with random intercepts and slopes for participant and surface area, 

respectively. We did in fact observe a significant positive association with surface area for all 

three centrality measures (degree: β = 0.59, p < 0.001; betweenness: β = 0.43, p < 0.001; 

participation coefficient: β = 0.58, p < 0.001). This relationship could reflect a true feature of 

brain architecture. Alternatively, it could reflect a methodological confound: given that the 
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fMRI timeseries was averaged over all vertices in a sulcus, it is possible that sulci with a 

larger surface area had a higher signal-to-noise ratio than smaller ones, perhaps artificially 

boosting their centrality metrics. Either way, it is all the more noteworthy that many of the 

small sulci had preferential connectivity to other small sulci rather than the larger ones. 

 

 
 

Figure 6. Functional organization of the sulcal LPFC–LPC network. (A) Spring plot of 

the network derived across participants, showing connections at 0.12 density and in dotted 

lines the strongest connection for the nodes isolated at this threshold (rh.pmfs-i, lh.pmfs-a, 

rh.prts, rh.lfms, and bilateral aalf and slocs-v). Each of the five larger clusters shows high 
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connectivity within the cluster. Node size is proportional to mean AUC degree. *Putative 

tertiary sulcus (pTS). The cluster colors match Figure 4B. (B) Functional connectivity 

fingerprints (mean, SD) of the right-hemisphere pTS in LPFC under investigation: pimfs, 

pmfs-i, and pmfs-a (dark blue cluster). For functional connectivity fingerprints of all sulci, 

with and without correction for spatial autocorrelation, see Extended Data Figure 6-1. 

(C) The nodes associated with significantly higher or lower centrality measures (degree, 

betweenness, and/or participation coefficient) relative to the mean of values of all nodes for 

that participant. Cells are shaded according to strength of t-values for each comparison, with 

warm and cool colors denoting above and below mean. Black dots depict cells with 

significant (FDR-corrected p < 0.05) results. 

Sulcal depth and functional connectivity are correlated for specific pTS in LPFC  

We tested whether the functional connectivity patterns of right and/or left pimfs, pmfs-a, and 

pmfs-i sulci measured during performance of a reasoning task would be related to their depth, 

as we have previously found that the depths of these sulci in the right hemisphere was related 

to reasoning performance (Voorhies et al., 2021). We found positive associations between 

depth and centrality measures for left pmfs-i, right pmfs-a, and left pimfs that survived 

correction for multiple comparisons (Figure 7A). These significant results were also obtained 

when not controlling for spatial autocorrelations (data available upon request). 

These depth-centrality relations were not driven by age. There were no significant 

linear or logarithmic associations between age and either centrality or pairwise connectivity 

strength (all |β| < 2.26, all FDR-corrected p > 0.36). Likewise, the depth of these sulci was 

not systematically associated with age (all |β| < 2.65, all positive and negative associations 

FDR-corrected p > 0.06; see also Willbrand et al., 2023b). Nevertheless, we included a linear 

effect of age as a covariate in these analyses given the large age range. 
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Figure 7. Sulcal depth and functional connectivity are correlated for specific pTS in 

LPFC. The depths of lh.pmfs-i, rh.pmfs-a, and left pimfs were positively correlated with 

their functional connectivity, controlling for age in addition to spatial autocorrelations. 

(A) First three columns: results of regression analyses revealing significant associations 

between depth and centrality measures for lh.pmfs-i and rh.pmfs-a. Cells are shaded 

according to strength of t-values for each regression, with warm and cool colors denoting 

positive and negative correlations, and darker shades indicating higher values. Dots depict 

cells with significant results (FDR-corrected p < 0.05). Remaining columns: correlations 

between the depth of each of these sulci and the strength of their pairwise functional 
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connectivity with the other sulci. *Putative tertiary sulcus (pTS). (B) Schematic illustrating 

the approximate anatomical distribution of sulci showing depth-related increases in pairwise 

connection strength (solid FDR-corrected, dashed trends at uncorrected p < 0.05). Node size 

reflects AUC estimate for degree.  

 

We next investigated the spatial pattern of pairwise sulcal connections contributing to 

the positive depth-connectivity associations shown by graph measures. The edgewise 

regression analysis revealed that these effects were not driven by connectivity within the 

LPFC (dark blue) or LPFC-LPC (purple) pTS clusters (Figure 7B). Rather, the specific 

pairwise connections implicated in these depth-connectivity associations included large and 

deep sulci in LPFC and LPC with high centrality measures (IPS, ifs, sfs-p) and sulci 

associated with the visual system (IPS-PO, lTOS), but not connectivity to neighboring sulci.  

Thus left pmfs-i (and, to a lesser extent, right pmfs-a) was more strongly connected across the 

LPFC–LPC sulcal network in participants for whom these sulci were deeper.  

To test the specificity of these results to our target pTS in LPFC, we conducted 

exploratory analyses testing for sulcal depth-connectivity relationships for three additional 

pTS of interest: 1) pmfs-p (in green/purple clusters in the left/right hemispheres), an LPFC 

sulcus that did not cluster with other pmfs components and has not – unlike them – been 

linked to reasoning performance, 2) aipsJ (in the LPFC-LPC purple cluster), a well-known 

pTS in LPC (Zlatkina and Petrides, 2014), and 3) slocs-v (small cyan cluster), a newly 

identified pTS in LPC that is variably present and has been associated with visuospatial 

perception (Willbrand et al., 2023c). These exploratory analyses revealed several significant 

depth–connectivity associations, with deeper sulci associated with stronger connectivity 

(bilateral aipsJ: degree and participation coefficient (β > 2.71, FDR-corrected p < 0.05; 

rh.slocs-v: all three metrics (β > 3.14, FDR-corrected p > 0.05; figure available upon 
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request). Thus, positive associations between sulcal depth and network centrality were not 

unique to target pTS in LPFC, but could also be found in several pTS in LPC. 

Variable correspondence between manually defined and probabilistic sulcal labels 

We created probabilistic labels based on spatial overlap across at least 33% of participants. 

Despite this liberal threshold, four sulci – all pTS – did not meet this criterion (lh.slocs-v, 

rh.pmfs-a, and bilateral aipsJ). For the 38/42 sulci with a probabilistic definition, strength of 

pairwise functional connectivity was moderately correlated with manual labels at the 

individual level (Pearson r = 0.58, pooling all participants and connections). The correlation 

between sulcal fingerprints was on average 0.70, but ranged from -0.51 to 0.98 across sulci 

and participants. In other words, the results for probabilistic labels were in some cases 

negatively correlated with manual ones; thus, they did not represent the same functional 

regions and network connectivity as the manual definitions in individual participants. 

 

 

Figure 8. Manual and probabilistic sulcal labels in LPFC (upper row) and LPC (lower 

row) in an example participant. Group-level probabilistic definitions (minimum 33% 

overlap in other participants) in LPFC and LPC (except for some pTS such as lh.slocs-v, 
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rh.pmfs-a, and bilateral aipsJ). Label sizes and geodesic distances were also greatly altered 

between probabilistic and manual definitions. Sulcal colors match Figure 2A.  

Discussion 

This study presents a novel approach of defining sulcal functional connectomes, building on 

prior work involving seeded functional connectivity based on specific sulci (Amiez et al., 

2023; Ducret et al., 2024; Lopez-Persem et al., 2019) and associations between individual 

sulci and canonical rs-fMRI networks (Miller et al., 2021; Willbrand et al., 2023a, 2023c). 

Here, we characterize individual LPFC-LPC sulcal connectomes, including smaller sulci that 

are typically overlooked (referred to here as pTS) in the context of a pediatric study of 

reasoning. We show that sulci have differentiable connectivity fingerprints, but could 

nevertheless be grouped together based on similar patterns of connectivity. Further, we 

demonstrate, via control analyses involving rotated sulcal labels and group-derived 

probabilistic labels, that network connectivity is meaningfully related to individual sulcal 

anatomy. We also report, for the first time (to our knowledge), associations between 

individual variability in sulcal depth and functional connectivity between LPFC and LPC – 

consistent with the hypothesis posited decades ago that sulcal morphology, including that of 

pTS in association cortices, is relevant to brain function (Sanides, 1962, 1964). 

Sulcal classification and clustering based on functional connectivity profiles 

Classification analyses revealed that most sulci had characteristic functional connectivity 

profiles, with mean pairwise classification accuracy of 96%. Based on similarity of their 

connectivity patterns, however, the sulci formed clusters of various configurations. Using the 

group-derived clusters as a point of departure for exploring individual-level clustering, we 

observed above-chance, but variable, agreement between group-level and individual-level 

cluster assignments, speaking to individual variability that is important to characterize. 
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Of note, the two clusters (dark blue and purple in Figure 4B) consisting only of pTS 

did not map clearly onto any of the large-scale canonical networks considered here 

(Hermosillo et al., 2024). The dark blue cluster included sulci previously linked to reasoning 

performance (Voorhies et al., 2021; Willbrand et al., 2023a, 2023b). We observed strong 

local connectivity among these sulci, and particularly weak connectivity between them and 

LPC sulci, consistent with local recurrent connectivity in support of higher-level cognition. 

This sulcal connectivity may be mediated by short-range fiber tracts in superficial white 

matter (Van Essen et al., 2013; Reveley et al., 2015) whose careful characterization and 

quantification awaits (Schilling et al., 2023). 

The sulcal-functional dissociations identified here are complementary to the handful 

of recent studies that have compared connectivity patterns of manually defined sulci in LPFC 

and LPC. One study showed that the neighboring pTS pmfs-a and pmfs-p overlapped with 

different large-scale networks (Miller et al., 2021). Another study, in macaques, showed 

different clustering based on whole-brain functional connectivity for the putative homologs 

of pmfs-a and pmfs-i (Amiez et al., 2023). Integrating these parallel tracks of research, and 

noting that pimfs, pmfs-a, pmfs-i, and pmfs-p are roughly positioned along a rostral-caudal 

axis, differences in their functional connectivity patterns may reflect their geographic 

location within a larger anatomical and functional hierarchical gradient in LPFC (Miller et 

al., 2021). Further study is required to test the contributions of morphology vs. topographic 

location on the functional connectivity patterns of these and other sulci. 

Sulci as a coordinate system for functional connectivity analyses  

A robust literature shows that cortical areas and large-scale networks can be defined in vivo 

based on patterns of functional connectivity (Gordon et al., 2017; Hermosillo et al., 2024; 

Power et al., 2011; Yeo et al., 2011). However, areal and network definitions vary markedly 

among individuals (Seitzman et al., 2019; Gordon and Nelson, 2021; Smith et al., 2021), and 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2025. ; https://doi.org/10.1101/2024.04.18.590165doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.590165
http://creativecommons.org/licenses/by-nc/4.0/


36 
 

may differ, at least in subtle ways, across the lifespan (e.g., Cui et al., 2020; Tooley et al., 

2022) and clinical populations (e.g., Lynch et al., 2024; Persichetti et al., 2024) – and as a 

function of analytic approach (Braga and Buckner, 2017; Cookson and D’Esposito, 2023; 

Dixon et al., 2018; Gordon et al., 2020; Kwon et al., 2025; Luckett et al., 2023; Uddin et al., 

2023). 

To address this variability, we propose to use sulci as a personalized coordinate space, 

building on prior work and theorizing (Ducret et al., 2024; Miller and Weiner, 2022; Lopez-

Persem et al., 2019; Sun et al., 2016). While a previous study found no correspondence 

between functional parcellations and major sulci defined in atlases (Zhi et al., 2022), we 

encourage further investigation at the individual level – including the numerous smaller, 

morphologically variable pTS, many of which do not appear in common atlases. Having 

observed inconsistencies in functional connectomes between group-derived probabilistic 

sulcal labels and individual ones, we propose that probabilistic definitions should be 

employed, or at least interpreted, with caution. Moreover, probabilistic labels cannot yet be 

used to derive accurate morphological sulcal metrics or test sulcal associations with white 

matter or behavior. That said, the probabilistic labels derived from this dataset could (i) serve 

as a starting point for trainees undertaking manual labeling of these sulci, and (ii) be used to 

characterize the location and inter-individual variability in the definition of these sulci 

(GitHub link to be provided). Ongoing work using deep-learning approaches suggests that 

probabilistic definitions could be used to derive accurate morphological sulcal metrics in the 

near future (Borne et al., 2020; Lee et al., 2024; Lyu et al., 2021). Moreover, identifying sulci 

requires only a short anatomical (T1) scan, as compared with many runs of task-based, 

resting-state, or multimodal data aimed at identifying cortical areas for network analyses. 
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Network centrality is correlated with sulcal depth 

Relative to the full set of sulci in the LPFC-LPC network, none of the pTS showed high 

centrality. From a network perspective, this is consistent with the “preferential age 

attachment” theory, which suggests that early-developing nodes should become stronger hubs 

than those born later (Barabási and Albert, 1999; Diez et al., 2022). Notably, although 

centrality was low on average for pTS, it was—for half of the pTS tested, both in our main 

analyses on LPFC sulci and exploratory ones on LPC sulci—higher for individuals with 

deeper pTS, driven by stronger and more widespread connectivity across the LPFC-LPC 

network. Given that sulcal development during gestation has been theorized to serve as the 

foundation of functional architecture and cognition (Régis et al., 2005; Cachia et al., 2021; 

Weiner, 2023), the hypothesis that the overall low, but variable, centrality of pTS relates to 

later neural and cognitive development should be tested longitudinally across early 

development.  

Further, while we showed that the depth of the left pimfs was correlated with a 

measure of network centrality, we combined the dorsal and ventral branches of this sulcus to 

maximize our sample size, as in our previous study relating sulcal depth to reasoning 

(Voorhies et al., 2021). However, having shown that the presence of the ventral branch of the 

left pimfs was associated with reasoning performance in both pediatric and adult samples 

(Willbrand et al., 2022, 2024), exploring how functional connectivity differs in the presence 

or absence of left pimfs-v would serve as an effective testbed for continuing to explore how 

functional connectivity relates to sulcal presence (Amiez and Petrides, 2014; Artiges et al., 

2006; Lopez-Persem et al., 2019; Wilbrand et al., 2023a). 
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Limitations and future directions 

This study should be considered an early step in a new line of inquiry, with limitations to be 

addressed in further research. First, the amount of fMRI data per participant, while fairly 

common in developmental samples, is lower than recommended to achieve high test-retest 

reliability for individual connections (Birn et al., 2013; Elliott et al., 2019; Laumann et al., 

2015; Noble et al., 2017). Second, as this study builds on prior findings in a project 

examining the neural basis of reasoning during development, it focuses on a specific dataset. 

Thus, it is an open question as to whether the results would generalize to other sulci, or other 

datasets involving other age groups or types of fMRI data – including resting-state fMRI data 

(but see Cole et al., 2016; Gratton et al., 2018; Salvo et al., 2021). Third, there may be 

residual head motion effects on connectivity. Fourth, the small sample size (or the inclusion 

of head motion as a covariate at the group level) likely explains the lack of effects of age on 

functional connectivity that have been widely documented (Grayson and Fair, 2017; Luo et 

al., 2024; Uddin et al., 2011), and perhaps also on sulcal depth. However, this does not 

detract from our individual differences analysis showing that depth and connectivity were 

correlated with one another – albeit not age – for a subset of sulci across a heterogeneous 

sample. 

Limitations aside, we have made a number of observations in this foundational study 

that lead us to make several predictions for studies involving other datasets: 1) sulci can be 

discriminated based on their connectivity patterns, outperforming null models, 2) some sulci 

would show similar patterns of connectivity despite their size and geographic distance, and 3) 

centrality would, for some sulci, vary across individuals as a function of depth. The present 

results also prompt further multi-modal characterization of pTS – including white matter 

measures, which may in some cases serve as a mechanistic link between cortical folding and 

functional brain architecture (Bouhali et al., 2024; Kruggel and Solodkin, 2023). 
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Extended Data Figure 2-1. Sulcal definitions in all participants. Colors and sulcal names 
match Figure 2A. 
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Extended Data Figure 6-1. Functional connectivity fingerprints with and without 

correction for spatial autocorrelations. The colors match the clusters in Figure 4B. 
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